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A Competitive Swarm Optimizer for Large Scale
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Abstract—In this paper, a novel competitive swarm optimizer
(CSO) for large scale optimization is proposed. The algorithm is
fundamentally inspired by the particle swarm optimization (PSO)
but conceptually very different. In the proposed CSO, neither
the personal best position of each particle nor the global best
position (or neighborhood best positions) is involved in updating
the particles. Instead, a pairwise competition mechanism is
introduced, where the particle that loses the competition will
update its position by learning from the winner. To understand
the search behavior of the proposed CSO, a theoretical proof
of convergence is provided, together with empirical analysis
of its exploration and exploitation abilities showing that the
proposed CSO achieves a good balance between exploration
and exploitation. Despite its algorithmic simplicity, our empirical
results demonstrate that the proposed CSO exhibits better overall
performance than five state-of-the-art metaheuristic algorithms
on a set of widely used large-scale optimization problems and is
able to effectively solve problems of dimensionality up to 5000.

Index Terms—Particle swarm optimization, competition, learn-
ing, convergence analysis, competitive swarm optimizer, large
scale optimization

I. I NTRODUCTION

PARTICLE swarm optimization (PSO) is one powerful and
widely used swarm intelligence paradigm [1] introduced

by Kennedy and Eberhart in 1995 [2] for solving optimization
problems. The algorithm is based on a simple mechanism
that mimics swarm behaviors of social animals such as bird
flocking. Due to its simplicity in implementation, PSO has
witnessed a rapid increase in popularity over the past decades.

PSO contains a swarm of particles, each of which has a
position and velocity flying in ann-dimensional search space,
representing a candidate solution of the optimization problem
to be solved. To locate the global optimum, the velocity and
position of each particle are updated iteratively using the
following equations:

Vi(t+ 1) = ωVi(t) + c1R1(t)(pbesti(t)−Xi(t))

+ c2R2(t)(gbest(t)−Xi(t)),
(1)

Xi(t+ 1) = Xi(t) + Vi(t+ 1), (2)

wheret is the iteration (generation) number,Vi(t) andXi(t)
represent the velocity and position of thei-th particle, re-
spectively;ω is termed inertia weight [3],c1 and c2 are the
acceleration coefficients [4],R1(t) andR2(t) are two vectors

Ran Cheng and Yaochu Jin are with the Department of Computing,
University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom (e-mail:
{r.cheng;yaochu.jin}@surrey.ac.uk).

Manuscript received July 20, 2013; revised xxxx, xxxx.

randomly generated within[0, 1]n; pbesti(t) and gbest(t)
are the best solution of thei-th particle found so far, often
known as thepersonal best, and the best solution found
by all particles so far, known as theglobal best, respec-
tively. Kennedy has referredc1R1(t)(pbesti(t) −Xi(t)) and
c2R2(t)(gbest(t) − Xi(t)) as thecognitive component and
social component, respectively [5].

Due to its conceptual simplicity and high search efficiency,
PSO has attracted much research interest over the past decades
and has been successfully applied to a number of applications,
such as water distribution network design [6], parameter
optimization in suspension system [7], resource allocation [8],
task assignment [9], DNA sequence compression [10] and
many others [11]. However, it has been found that PSO
perform poorly when the optimization problem has a large
number of local optima or is high-dimensional [12]. The
above weaknesses can usually be attributed to the premature
convergence that often occurs in PSO [13].

As a typical population-based optimization technique, con-
vergence speed and global search ability are two critical
criteria for the performance of PSO algorithms. In order to
alleviate premature convergence by achieving a good balance
fast convergence and global search ability, a number of PSO
variants have been suggested, which can be largely classified
into the following four categories [13]:

1) Adaptation of the control parameters.ω, c1 and c2 are
the three control parameters in the canonical PSO, as
shown in (1).ω, termed the inertia weight, was first
proposed by Shi and Eberhart to balance between global
search and local refinement [14]. The inertia weightω
was further modified by linearly decreasing it from 0.9
to 0.4 over the search procedure [15]. Another important
modification ofω is the introduction of fuzzy inference
[16].
Methods for adaptingc1 andc2 (called the acceleration
coefficients) have also been suggested. Time-varying
acceleration coefficients were first introduced by Rat-
naweeraet al. in [17]. Similarly, a time-varying PSO
based on a novel operator was introduced in [18].
Most recently, a multiple parameter control mechanism
has been introduced to adaptively change all the three
parameters in [19].

2) Modifications in topological structures. The motivation
of introducing topological structures in PSO is to en-
hance the swarm diversity using neighborhood control
[20], [21]. Several topological structures have been
proposed [22], including the ring topology and the von
Neumann topology. In [23], a fully informed PSO (FIPS)
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was developed, where the update of each particle is
based on the positions of several neighbors. Another
important example is the comprehensive learning PSO
(CLPSO) introduced in [24], where particles update
each dimension by learning from different local best
positions. Recently, a distance-based locally informed
particle swarm optimizer was proposed specifically to
tackle multimodal problems in [25].

3) Hybridization with other search techniques. Since dif-
ferent search techniques have different strengths, it is a
natural idea to hybridize PSO with other search meth-
ods. One straightforward idea is to combine PSO with
different evolutionary algorithms, such as genetic algo-
rithms [26], differential evolution [27], and ant colony
optimization [28], [29]. Another important idea is to
integrate PSO with local search techniques [30], [31]. In
addition, various search operators based on sociological
or biological concepts have also been proposed, such
as the niching PSO [32], cultural-based PSO [33] and
the aging theory inspired PSO (ALC-PSO) [13]. Other
hybrid PSO variants include PSO with Gaussian muta-
tion [34], PSO with chaos [35], orthogonal learning PSO
(OLPSO) [36], PSO with a moderate-random-search
strategy [37], and a very recently proposed PSO with
a periodic mutation strategy and neural networks [38].

4) Multi-swarm PSO. One early work on multi-swarm PSO
was reported in [39], where the sub-swarms cooperate
to solve large scale optimization problems. In [30],
a dynamic multi-swarm PSO (DMS-PSO) algorithm
is proposed to dynamically change the neighborhood
structure for a higher degree of swarm diversity, even
with a very small swarm size. More multi-swarm PSO
variants can be found in [40], [41].

Since most PSO variants introduce new mechanisms or
additional operators, the enhancement of search performance is
often at the cost of increasing the computational complexity.
Furthermore, due to the strong influence of the global best
position gbest on the convergence speed [39], premature
convergence remains a major issue in most existing PSO
variants. To take a closer look into the influence ofgbest on
premature convergence, we rewrite (1) as follows:

Vi(t+ 1) = ωVi(t) + θ1(p1 −Xi(t)), (3)

where,
θ1 = c1R1(t) + c2R2(t),

p1 =
c1R1(t)

c1R1(t) + c2R2(t)
pbesti(t)

+
c2R2(t)

c1R1(t) + c2R2(t)
gbest(t).

(4)

From (3), it can be noticed that the difference betweenp1
andXi serves as the main source of diversity. More precisely,
the diversity ofp1 itself is generated by the difference between
pbesti and gbest, refer to (4). However, in practice, due
to the global influence ofgbest, pbesti is very likely to
have a value similar to or even the same asgbest, thus
considerably reducing the swarm diverisity. In other words,

as a source of diversity,p1 largely determines how well
PSO is able to balance exploration and exploitation in the
search procedure. Having noticed this, Mendes and Kennedy
proposed a modified PSO, wherep1 is the best particle in the
neighborhood of a particle rather than a combination ofgbest
and pbesti [23]. Out of similar considerations, Lianget. al
also introduced a PSO variant withoutgbest [24], where the
update strategy aims to learn frompbesti only.

In order to address premature convergence, a step further
might be to completely get rid ofgbest and pbesti. An
attempt was made along this line in a multi-swarm framework
[42], where neithergbest nor pbesti has been used. In this
multi-swarm framework, the update of particles is driven by
a pairwise competition mechanism between particles from the
two swarms. After each competition, the loser will be updated
according to the information from the winner swarm, while
the winner will be updated using a mutation strategy. In the
experiments, the framework showed promising performance
on relatively high-dimensional problems.

Following the idea in [42], in this work, we explore the
use of the competition mechanism between particles within
one single swarm. In addition, the particle loses a competition
will learn from the winner particle instead of fromgbest or
pbesti. Since the main driving force behind this idea is the
pairwise competition mechanism between different particles
and neithergbest nor pbesti is involved in the search process,
we term the proposed algorithmCompetitive Swarm Optimizer
(CSO) to avoid ambiguity. CSO distinguishes itself from the
canonical PSO mainly in the following aspects:

1) In the canonical PSO, the dynamic system is driven
mostly by the global best positiongbest and individual
best positionpbesti, whilst in CSO, there is no more
gbest or pbesti. Instead, the dynamic system is driven
by arandom competitionmechanism, where any particle
could be a potential leader;

2) In PSO, the historical best positions are recorded, whilst
in CSO, there is no memory used to memorize the
historical positions. By contrast, the particles that losea
competition learn from the winners in the current swarm
only.

The rest of this paper is organized as follows. Section II
presents the details of CSO, followed by an empirical analysis
of search behaviors and a theoretical convergence proof in
Section III. Section IV first presents some statistical results
that compare CSO with a few state-of-the-art algorithms on
the CEC’08 benchmark functions of dimensionality up to 1000
[43]. Empirical investigations on the influence of the parameter
settings are also conducted. The search ability of CSO has
been challenged further with the test functions of 2000 and
5000 dimensions, which, to the best of our knowledge, are
the highest dimensions that have ever been reported in the
evolutionary optimization literature. Finally, the influence of
neighborhood control on the search performance has been
investigated. Conclusions will be drawn in Section V.
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II. A LGORITHM

Without loss of generality, we consider the following min-
imization problem:

minf = f(X)

s.t. X ∈ X (5)

where X ∈ R
n is the feasible solution set,n denotes the

dimension of the search space, i.e., the number of decision
variables.

In order to solve the optimization problem above, a swarm
P (t) contains m particles is randomly initialized and it-
eratively updated, wherem is known as the swarm size
and t is the generation index. Each particle has ann-
dimensional position,Xi(t) = (xi,1(t), xi,2(t), ..., xi,n(t)),
representing a candidate solution to the above optimization
problem, and ann-dimensional velocity vector,Vi(t) =
(vi,1(t), vi,2(t), ..., vi,n(t)). In each generation, the particles
in P (t) are randomly allocated intom/2 couples (assuming
that the swarm sizem is an even number), and afterwards,
a competition is made between the two particles in each
couple. As a result of each competition, the particle having
a better fitness, hereafter denoted aswinner, will be passed
directly to the next generation of the swarm,P (t+ 1), while
the particle that loses the competition, theloser, will update
its position and velocity by learning from the winner. After
learning from the winner, the loser will also be passed to
swarmP (t+1). This means that each particle will participate
in a competition only once. In other words, for a swarm size of
m, m/2 competitions occur so that allm particles participate
in one competition once and the position and velocity ofm/2
particles will be updated. Fig. 1 illustrates the main idea of
CSO.

Updated loser

Swarm P(t) Swarm P(t+1)

t = t + 1

Competition Learning

Winner

Loser

Fig. 1. The general idea of CSO. During each generation, particles are
pairwise randomly selected from the current swarm for competitions. After
each competition, the loser, whose fitness value is worse, will be updated by
learning from the winner, while the winner is directly passed to the swarm
of the next generation.

Let us denote the position and velocity of the winner and
loser in thek-th round of competition in generationt with
Xw,k(t), Xl,k(t), and Vw,k(t), Vl,k(t), respectively, where
k = 1, 2, ...,m/2. Accordingly, after thek-th competition the
loser’s velocity will be updated using the following learning

strategy:

Vl,k(t+ 1) = R1(k, t)Vl,k(t)

+R2(k, t)(Xw,k(t)−Xl,k(t))

+ ϕR3(k, t)(X̄k(t)−Xl,k(t)).

(6)

As a result, the position of the loser can be updated with the
new velocity:

Xl,k(t+ 1) = Xl,k(t) + Vl,k(t+ 1), (7)

whereR1(k, t), R2(k, t), R3(k, t) ∈ [0, 1]n are three randomly
generated vectors after thek-th competition and learning
process in generationt, X̄k(t) is the mean position value of the
relevant particles,ϕ is a parameter that controls the influence
of X̄(t). Specifically, forX̄k(t), a global version and a local
version can be adopted:

1) X̄g
k (t) denotes the global mean position of all particles

in P (t);
2) X̄ l

l,k(t) means the local mean position of the particles
in a predefined neighborhood of particlel.

It has been found that neighborhood control is able to help
improve PSO’s performance on multimodal function by main-
taining a higher degree of swarm diversity [21]. Similarly,
the motivation to introduce neighborhood control in̄Xk(t) is
to increase swarm diversity, which potentially enhances the
search performance of CSO. In the remainder of this paper,
the global versionX̄g

k (t) is adopted as a default setup unless
otherwise specified. The performance of CSO using the local
versionX̄ l

l,k(t) will be investigated in Section IV.D.
In order to gain a better understanding of the learning

strategy in CSO, we provide below more discussions about
(6).

1) The first partR1(k, t)Vl,k(t) is similar to the inertia
term in the canonical PSO, refer to (1), which ensures
the stability of the search process. The only difference is
that the inertia weightω in PSO is replaced by a random
vectorR1(t) in CSO.

2) The second partR2(k, t)(Xw,k(t) − Xl,k(t)) is also
calledcognitive componentafter Kennedy and Eberhart.
Different from the canonical PSO, the particle that loses
the competition learns from its competitor, instead of
from its personal best position found so far. This mech-
anism may be biologically more plausible in simulating
animal swarm behaviors, since it is hard to require
that all particles memorize the best position they have
experienced in the past.

3) The third partϕR3(k, t)(X̄(t) − Xl,k)(t)) is termed
social component, again after Kennedy and Eberhart.
However, the particle that loses the competition learns
from the mean position of the current swarm rather than
the gbest, which requires no memory and makes good
sense, biologically.

With the descriptions and definitions above, the pseudo
code of CSO algorithm can be summarized in Algorithm 1.
We can see that CSO maintains the algorithmic simplicity
of PSO, which is quite different from most existing PSO
variants. Apart from the fitness evaluations, which is problem
dependent [44], [45], the main computational cost in CSO is
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Algorithm 1 The pseudocode of the Competitive Swarm Op-
timizer (CSO).t is the generation number.U denotes a set of
particles that have not yet participated in a competition. Unless
otherwise specified, theterminal conditionis the maximum
number of fitness evaluations.

1: t = 0;
2: randomly initializeP (0);
3: while terminal conditionis not satisfieddo
4: calculate the fitness of all particles inP (t);
5: U = P (t), P (t+ 1) = ∅;
6: while U 6= ∅ do
7: randomly choose two particlesX1(t), X2(t) from U ;
8: if f(X1(t)) ≤ f(X2(t)) then
9: Xw(t) = X1(t), Xl(t) = X2(t);

10: else
11: Xw(t) = X2(t), Xl(t) = X1(t);
12: end if
13: addXw(t) into P (t+ 1);
14: updateXl(t) using (6) and (7);
15: add the updatedXl(t+ 1) to P (t+ 1);
16: removeX1(t), X2(t) from U ;
17: end while
18: t = t+ 1;
19: end while

the update ofXl(t), which is an inevitable operation in most
swarm or population based evolutionary algorithms [2], [46]–
[48]. Consequently, the computational complexity of CSO is
O(mn), where m is the swarm size andn is the search
dimensionality.

III. SEARCH DYNAMICS ANALYSIS AND CONVERGENCE

PROOF

In order to better understand the search mechanism in CSO,
we will carry out empirical studies on its search dynamics by
comparing it with the canonical PSO. In addition, a theoretical
proof of convergence will be given, which shows that CSO,
similar to the canonical PSO, will converge to an equilibrium.
Note, however, that this equilibrium is not necessarily the
global optimum.

A. Analysis of search dynamics

1) Exploration: Exploration is desirable in the early stage
of optimization to perform global search and locate the opti-
mum regions. To examine the exploration ability of CSO, we
reformulate (6) into a form similar to (3):

Vi(t+ 1) = R1(k, t)Vi(t) + θ2(p2 −Xi(t)), (8)

then the following expression can be obtained:

θ2 = R2(k, t) + ϕR3(k, t)

p2 =
R2(k, t)

R2(k, t) + ϕR3(k, t)
Xw(t) +

ϕR3(k, t)

R2(t) + ϕR3(k, t)
X̄(t).

(9)
Compared to (4), it can be observed that (9) has better chance
to generate a higher degree of diversity. On the one hand,
particleXw(t) is randomly chosen from the swarm before the

competition, whilstgbest(t) is deterministically updated and
shared by all particles, andpbesti(t) is also deterministically
updated and always used by particlei. On the other hand,
althoughX̄(t) is shared by several particles, it depends on
the mean current position of the whole swarm, which will be
less likely to introduce bias towards any particular particle.
Finally, it is noted that in CSO, only half of the particles will
be updated in each generation, while in PSO, all particles are
updated.

To illustrate the above intuitive observation, three typical
cases are considered below to show how CSO is potentially
able to perform more explorative search than the canonical
PSO.
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Xl(t)
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p′1w = pbestw(t)+gbest(t)
2

p′1l =
pbestl(t)+gbest(t)

2

Fig. 2. Illustration of the search dynamics of the canonicalPSO on a
multimodal optimization problem. In this case,gbest(t) is in a local optimum
region and the two particlesw(t) and l(t) is attracted into this region.

Let us first consider a situation wheregbest(t) is trapped
in a local optimum, as illustrated in Fig. 2. For particlel(t),
since bothXl(t) and pbestl(t) are located inside the local
optimum region, the particle will move towards the local
optimum position recorded bygbest(t). By contrast, although
both Xl(t) and pbestl(t) are located outside the optimum
region, particlew(t) will still move in a wrong direction
towards the local optimum due to the dynamics driven by
gbest(t).

A natural idea to avoid the situation shown in Fig. 2 is to
remove thegbest(t) from the update strategy so that particles
will learn from pbest(t) only. This methodology has already
been adopted by Lianget al [24]. In this way, particlel(t) is
able to fly over the local optimum, refer to Fig. 3. Without
gbest(t), PSO seems to be in a better position to perform
exploration.

However, althoughgbest(t) is removed,pbest(t) can still
attract the particles into a local optimum region, limitingits
ability to explore the whole landscape. Let us consider the
situation shown in Fig. 4. In iterationt, both particles reside
inside the local optimum region, including theirpbest(t). In
iteration t + 1, coincidentally, particlew(t + 1) manages to
move outside the local optimum region and its new position is
Xw(t+ 1). However, since the fitness value ofpbestw(t+ 1)
is still better thanXw(t + 1), pbestw(t) is not updated. As
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Fig. 3. Illustration of a situation where search is performed in a multimodal
space using a PSO variant withoutgbest. In this case, particlel will fly over
the global optimum region due to the attraction of thepbestw.
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Fig. 4. Illustration of a situation where search is performed in a multimodal
space using a PSO variant withoutgbest(t). In this case, thepbestw(t) of
particlew(t) is located in a local optimum region, serving as alocal gbest.
As a result, both particlesl(t) andw(t) will be attracted bypbestw(t).

a consequence,pbestw(t) continues to serve as anattractor,
which will pull particlew(t+1) back into the local optimum
region again. In this situation,pbestw(t) has played the role of
a local gbest, although nogbest(t) is adopted. In comparison,
both the situations as shown in Fig. 2 and Fig. 4 can
be avoided by CSO because bothgbest(t) and pbest(t) are
removed, refer to Fig. 5.

2) Exploitation: Exploitation is required in the later search
stage to refine the solution found at the exploration stage. To
analyze the exploitation behavior of CSO, we randomly pick
up two particlesw and l from the swarm and the following
relationship holds:

f(Xw(t)) ≤ f(Xl(t)), (10)
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Xw(t), Xl(t+ 1)
Xw(t+ 1)

Xl(t)

Fig. 5. Illustration of a situation where search is performed in a multimodal
space using a PSO variant with neithergbest(t) nor pbest(t) (CSO). In this
case, particlel(t) is only attracted by particlew(t), thereby flying over the
local optimum region.

According to the definitions ofgbest andpbest in the canon-
ical PSO, the following relationship can be obtained:

{

f(gbest(t)) ≤ f(pbestw(t)) ≤ f(Xw(t)),

f(gbest(t)) ≤ f(gbestl(t)) ≤ f(Xl(t)).
(11)

When t becomes very large in the late search stage, the fol-
lowing relationship betweenpbestw(t), pbestl(t) andgbest(t)
holds:

{

pbestw(t) ≈ gbest(t),

pbestl(t) ≈ gbest(t)
. (12)

Let

∆F1(t) = |f(Xl(t))− f(gbest)|

= |f(Xl(t))− f(
gbest(t) + gbest(t)

2
)|

≈ |f(Xl(t))− f(
gbest(t) + pbestl(t)

2
)|

= |f(Xl(t))− f(p′1)|,
∆F2(t) = |f(Xl(t))− f(Xw(t))|

= |f(Xl(t))− f(p′2)|,

(13)

where p′1 is the expected value ofp1 in (4) and p′2 is the
expected value ofp2 in (9) with ϕ = 0. Then the following
relationship can be obtained from (10), (11) and (12):

∆F2(t) ≤ ∆F1(t). (14)

The relationship in (14) indicates that CSO, in comparison
with the canonical PSO, has a better ability to exploit the
small gaps between two positions whose fitness values are
very similar.

B. Theoretical convergence proof

Similar to most theoretical convergence analysis of PSO
[49]–[51], a deterministic implementation of CSO is consid-
ered to theoretically analyze its convergence property. Itshould
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also be pointed out that the proof does not guarantee the
convergence to the global optimum.

For any particlei in P (t), it can have the following two
possible behaviors after participating in a competition:

1) Xi(t+ 1) = Xi(t), if Xi(t) is a winner;
2) Xi(t + 1) is updated using (6) and (7), ifXi(t) is a

loser.

In caseXi(t) is a winner, the particle will not be updated.
Therefore, we only need to consider the case whenXi(t)
is a loser and then updated. Without loss of generality, we
can rewrite (6) and (7) by considering an one-dimension
deterministic case:

Vi(t+ 1) =
1

2
Vi(t)

+
1

2
(Xw(t)−Xi(t))

+ ϕ
1

2
(X̄(t)−Xi(t)),

Xi(t+ 1) = Xi(t) + Vi(t+ 1),

(15)

where1
2 is the expected value ofR1, R2 andR3, Xw(t) is the

position of the winner in the competition with thei-th particle.

Theorem 1. For any givenϕ ≥ 0, the dynamic system
described by (15) will converge to an equilibrium.

Proof. Let

θ =
1 + ϕ

2
,

p =
1

1 + ϕ
Xw(t) +

ϕ

1 + ϕ
X̄(t),

(16)

then (15) can be simplified to:

Vi(t+ 1) =
1

2
Vi(t) + θ(p−Xi(t))

Xi(t+ 1) = Xi(t) + Vi(t+ 1),
(17)

The search dynamics described in (17) can be seen as a
dynamical system, and the convergence analysis of the system
can be conducted by using the well-established theories on
stability analysis in dynamical systems. To this end, we rewrite
system (17) in the following form:

y(t+ 1) = Ay(t) +Bp, (18)

where

y(t) =

[

Vi(t)

X(t)

]

, A =

[

1
2 −θ
1
2 1− θ

]

, B =

[

θ

θ

]

, (19)

whereA is calledstate matrixin dynamical system theory,p
is called external inputthat drives the particle to a specific
position andB is called input matrix that controls external
effect on the dynamics of the particle.

If there exists anequilibrium y∗ that satisfiesy∗(t + 1) =
y∗(t) for any t, it can be calculated from (18) and (19):

y∗ =
[

0 p
]

, (20)

which means that the particles will finally stabilize at the same
position, provided thatp is constant, i.e., an optimum (local

or global) has been found, so that no more update forp will
happen.

Convergence means that the particles will eventually settle
down at the equilibrium pointy∗. From the dynamical system
theory, we can know that the convergence property depends
on the eigenvalues of the state matrixA:

λ2 − (
3

2
− θ)λ+

1

2
= 0, (21)

where the eigenvalues are:






λ1 = 3
4 − θ

2 +

√
( 3

2
−θ)2−2

2

λ2 = 3
4 − θ

2 −
√

( 3

2
−θ)2−2

2

(22)

The necessary and sufficient condition for the convergence,
i.e., the equilibrium point is a stable attractor, is that|λ1| < 1
and |λ2| < 1, leading to the result:

θ > 0, (23)

where if θ is substituted byϕ using (16), the condition for
convergence onϕ is:

ϕ > −1. (24)

Therefore,ϕ ≥ 0 is a sufficient condition for the convergence
of the system.

From Theorem 1, we can conclude that the algorithm will
converge to an equilibrium regardless the exact value ofϕ, as
long asϕ > −1. In this work, only non-negativeϕ ≥ 0 will
be adopted.

IV. EXPERIMENTAL STUDIES

In this section, we will perform a set of experiments
conducted on the seven benchmark functions proposed in the
CEC’08 special session on large scale optimization problems
[43]. Among the seven functions,f1 (Shifted Sphere),f4
(Shifted Rastrigin) andf6 (Shifted Ackley) are separable
functions, while the other four functionsf2 (Schwefel Prob-
lem), f3 (Shifted Rosenbrock),f5 (Shifted Griewank) andf7
(Fast Fractal) are non-separable. Note thatf5 becomes more
separable as the dimension increases, because the product
component off5 becomes increasingly less significant [52]
with an increasing dimension. Therefore, in the following
experiments, if the dimension is equal to or higher than 500,
f5 will be regarded a separable function.

At first, experiments are conducted to empirically under-
stand the influence of the two parameters in CSO, namely,
the swarm sizem and the social factorϕ. Then, CSO is
compared with a few recently proposed algorithms for large
scale optimization on 100-D, 500-D, and 1000-D benchmark
functions. Afterwards, regarding the scalability to search di-
mensions, CSO is further challenged on 2000-D and 5000-D
functions. Finally, the influence of neighborhood control on
CSO’s swarm diversity and search performance is investigated.

The experiments are implemented on a PC with an Intel
Core i5-2500 3.3GHz CPU and Microsoft Windows 7 En-
terprise SP1 64-bit operating system, and CSO is written in
language C on Microsoft Visual Studio 2010 Enterprise.
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All statistical results, unless otherwise specified, are aver-
aged over 25 independent runs. For each independent run,
the maximum number of fitness evaluations (FEs), as recom-
mended in [43], is set to5000 ∗ n, wheren is the search
dimension of the test functions. In the comparisons between
different statistical results, two-tailedt-tests are conducted at
a significance level ofα = 0.05.

A. Parameter settings
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Fig. 6. Statistical results of optimization errors obtained CSO on 2 non-
separable functionsf2, f3 and 2 separable functionsf1, f6 of 500 dimensions
with different swarm sizesm varying from 25 to 300.

1) Swarm size:Like most swarm optimization algorithms,
the swarm size is an indispensable parameter. With a small
swarm size, the particles tend to converge very fast before
the search space is well explored, thus leading to premature
convergence; however, if the swarm size is too big, a large
number of FEs will be required during each generation,
which may become impractical for computationally expensive
problems.

Generally, the swarm size is empirically specified. For
example, in CCPSO2 [52], multi-swarms were adopted with a
swarm size 30 for each swarm, and for 500-D functions, the
number of swarms varied from 4 to 50, creating an average
size around 240; in DMS-PSO [30], a larger swarm size 450
was adopted for the optimization of 500-D functions.

To gain empirical insight into the influence of the swarm
size on the search performance of CSO, the swarm size has
been varied from 25 to 300 for the four CEC’08 functions
f1, f2, f3 and f6 of search dimension 500. Among the four
functions,f1 andf6 are separable and the other two are non-
separable. To remove the influence of thesocial component,
ϕ is set to0 in this set of experiments.

Fig. 6 shows the statistical results of the optimization errors
obtained by CSO with different swarm sizesm. It can be seen

that CSO performs well on 500-D functions with a swarm size
around 150, which is smaller than the swarm sizes adopted in
CCPSO2, DMS-PSO and other PSO variants, though CSO is
a single-swarm algorithm without anyad hocmechanism for
large scale optimization. More interestingly, when the swarm
size is bigger than some specific values (e.g. 100 forf1), the
optimization performance begin to deteriorate. The reasonis
that with a bigger swarm size, more FEs (fitness evaluations)
have to be performed in each generation. Since the terminal
condition in this experiment is the maximal number of FEs,
a larger swarm size means a smaller number of generations.
This also implies that the performance of CSO does not rely
much on a large swarm size. From Fig. 6, we can also see
that a swarm size smaller than 100 might be too small for
500-dimensional problems. Based on the observations and
discussions above, the swarm size should not be smaller
than 200 for real-world large scale (D ≥ 500) optimization
problems.

2) Social factor: In the following, we investigate the in-
fluence of thesocial componentby varying thesocial factor
ϕ. To this end, simulations have been conducted on the four
functions with the swarm sizem varying from 200 to 1000
andϕ varying from 0 to 0.3.

From the statistical results summarized in Table I, we can
see that the best statistical results are the diagonal elements in
the table, which implies that there exist a correlation between
m and ϕ. Additionally, it can also be noticed that the non-
separable functions (f2 and f3) require a smallerϕ than the
separable functions (f1 andf6) to achieve good performance.
The reason might be that separable functions are easier to
optimize, as a result, a biggerϕ would work better because it
leads to faster convergence. The best combinations observed
from Table I are summarized in Table II.
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Fig. 7. Fitting curves describing the relationship betweenthe social factor
φ and swarm sizem that lead to the best search performance using the
logarithmic linear regression analysis.

For a deep insight into the relationship between the optimal
pair of ϕ andm, a logarithmic linear regression analysis has
been performed to model the relationship betweenm andϕ
using the data in Table II, as shown in Fig. 7. Based on the
regression analysis result, the following empirical setups for
ϕ and swarm sizem is recommended:

{

ϕ(m) = 0 if m ≤ 100,
ϕ(m) ∈ [ϕL(m), ϕU (m)] otherwise

(25)

whereϕL(m) andϕL(m) are the lower and upper bound
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TABLE I
STATISTICAL RESULTS (MEAN VALUES AND STANDARD DEVIATIONS ) OF OPTIMIZATION ERRORS OBTAINED BYCSOON 2 NON-SEPARABLE FUNCTIONS

f2 , f3 AND 2 SEPARABLE FUNCTIONSf1 , f6 OF 500DIMENSIONS WITH THE SWARM SIZEm VARYING FROM 200TO 1000AND ϕ FROM 0 TO 0.3.

Swarm size Function ϕ = 0 ϕ = 0.1 ϕ = 0.2 ϕ = 0.3

m = 200

f2 4.79E+01(1.97E+00) 8.26E+01(2.85E+00) 8.58E+01(3.48E+00) 8.45E+01(1.27E+00)
f3 5.95E+02(1.55E+02) 8.25E+02(5.28E+01) 1.07E+07(4.57E+06) 4.33E+09(6.06E+08)
f1 1.08E-09(2.26E-10) 4.73E-23(8.70E-25) 1.51E+01(1.77E+01) 3.50E+04(3.77E+03)
f6 3.24E-06(2.96E-07) 3.57E-13(1.02E-14) 2.78E+00(1.75E-01) 1.04E+01(7.18E-01)

m = 400

f2 6.09E+01(1.06E+00) 5.47E+01(3.46E+00) 7.41E+01(7.92E-01) 6.09E+01(1.06E+00)
f3 1.31E+06(1.22E+05) 4.90E+02(1.27E-01) 5.01E+03(6.21E+02) 2.75E+08(3.96E+07)
f1 3.17E+00(3.86E-01) 4.38E-16(5.76E-17) 3.22E-22(2.41E-23) 1.29E+03(2.69E+02)
f6 2.94E-01(1.76E-02) 1.49E-09(4.36E-11) 8.82E-13(1.42E-14) 4.00E+00(1.85E-01)

m = 600

f2 6.52E+01(7.68E-01) 2.74E+01(3.76E+00) 6.72E+01(1.26E+00) 7.17E+01(8.32E-01)
f3 2.75E+08(3.96E+07) 4.92E+02(4.00E-01) 1.39E+03(3.84E+02) 5.28E+07(1.09E+07)
f1 3.26E+02(2.84E+01) 2.57E-08(1.69E-09) 5.46E-22(2.72E-23) 3.73E+01(1.61E+01)
f6 3.33E+00(3.07E-02) 1.27E-05(6.24E-07) 1.10E-12(1.48E-14) 1.91E+00(8.08E-02)

m = 1000

f2 7.12E+01(7.47E-01) 3.22E+01(4.68E-01) 6.11E+01(1.61E+00) 6.89E+01(7.57E-01)
f3 1.40E+09(1.26E+08) 6.43E+02(1.68E+01) 5.97E+02(6.90E+01) 8.34E+06(1.76E+06)
f1 5.74E+03(4.94E+02) 1.19E-02(5.35E-04) 7.26E-12(2.89E-13) 2.01E-18(7.69E-19)
f6 6.75E+00(4.61E-02) 9.58E-03(3.70E-04) 1.60E-07(8.03E-09) 2.55E-11(5.88E-12)

Two-tailed t-tests have been conducted between the statistical resultsin each row. If one result is significantly better than all theother errors, it is highlighted.
Note that the statistical results are shown in the order off2, f3 (non-separable functions) andf1, f6 (separable functions), to clearly see the differentϕ
values for non-separable and separable functions.

of the recommended social factor that can be determined as
follows:







ϕL(m) = 0.14 log(m)− 0.30
ϕR(m) = 0.27 log(m)− 0.51
ϕL(m), ϕR(m) ≥ 0

. (26)

TABLE II
THE BEST COMBINATIONS OF THE SWARM SIZEm AND THE SOCIAL

FACTORϕ IN THE OPTIMIZATION OF 500-Df1 , f2 , f3 AND f6 .

m = 200 m = 400 m = 600 m = 1000
ϕmin 0 0.1 0.1 0.1
ϕmax 0.1 0.2 0.2 0.3

ϕmax andϕmin denote the maximal and minimalϕ that perform best with
correspondingm, respectively.

TABLE III
PARAMETER SETTINGS FOR THE SEVEN FUNCTIONS OF100-D, 500-D

AND 1000-D.

Parameter Dimensions Separable functions Non-separable functions

m
100-D 100 100
500-D 250 250
1000-D 500 500

ϕ
100-D 0 0
500-D 0.1 0.05
1000-D 0.15 0.1

Separable functions includef1, f4, f5, f6. Non-separable functions includef2,f3,
f7. Note thatf5 is grouped as a non-separable function because the product component
becomes less significant with the increase of dimension [52].

B. Benchmark comparisons

In order to verify the performance of CSO for large scale
optimization, CSO has been compared with a number of the
state-of-the-art algorithms tailored for large scale optimization
on the CEC’08 test functions with dimensions of 100, 500 and
1000. The compared algorithms for large scale optimization
include CCPSO2 [52], MLCC [53], sep-CMA-ES [54], EPUS-
PSO [55] and DMS-PSO [30]. The same criteria proposed in
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Fig. 8. The convergence profiles of CSO, CCPSO2 and MLCC on 500-D f1
andf5

the CEC’08 special session on large scale optimization [43]
have been adopted.

Among the compared algorithm, the CCPSO2 [52] and
the MLCC [53] are designed in the cooperative coevolution
(CC) framework [56], which has been proposed to solve
high-dimensional problems by automatically implementingthe
divide-and-conquerstrategy [57]. Specifically, in both algo-
rithms, random grouping technique is used to divide the whole
decision vector into different subcomponents, each of which
is solved independently. In CCPSO2, a modified PSO using
Cauchy and Gaussian distributions for sampling around the
personal best and the neighborhood best positions is adopted
as the core algorithm to evolve the CC framework whilst
in MLCC, a self-adaptive neighborhood search differential
evolution (SaNSDE) is adopted.

The sep-CMA-ES is a simple modification of the origi-
nal CMA-ES algorithm [58], which has been shown to be
more efficient, and to scale surprisingly well on some high-
dimensional test functions up to 1000 dimensions [54]. EPUS-
PSO and DMS-PSO are another two PSO variants, where the
former adjusts the population size according to the search
results [55] and the latter adopts a dynamically changing
neighborhood structure for each particle [30], and both of them
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TABLE IV
THE STATISTICAL RESULTS(FIRST LINE) AND THE t VALUES (SECOND LINE) OF OPTIMIZATION ERRORS ON100-DTEST FUNCTIONS.

100-D CSO CCPSO2 MLCC sep-CMA-ES EPUS-PSO DMS-PSO

f1
9.11E-29(1.10E-28) 7.73E-14 (3.23E-14) 6.82E-14 (2.32E-14) 9.02E-15 (5.53E-15) 7.47E-01 (1.70E-01) 0.00E+00 (0.00E+00)

– -1.20E+01 -1.47E+01 -8.16E+00 -2.20E+01 4.14E+00

f2
3.35E+01(5.38E+00) 6.08E+00 (7.83E+00) 2.53E+01 (8.73E+00) 2.31E+01 (1.39E+01) 1.86E+01 (2.26E+0) 3.65E+00 (7.30E-01)

– 1.44E+01 4.00E+00 3.49E+00 1.28E+01 2.75E+01

f3
3.90E+02(5.53E+02) 4.23E+02 (8.65E+02) 1.50E+02 (5.72E+01) 4.31E+00 (1.26E+01) 4.99E+03 (5.35E+03) 2.83E+02 (9.40E+02)

– -1.61E-01 2.16E+00 3.49E+00 -4.28E+00 4.91E-01

f4
5.60E+01(7.48E+00) 3.98E-02 (1.99E-01) 4.39E-13 (9.21E-14) 2.78E+02 (3.43E+01) 4.71E+02 (5.94E+01) 1.83E+02 (2.16E+01)

– 3.74E+01 3.74E+01 -3.16E+01 -3.47E+01 -2.78E+01

f5
0.00E+00(0.00E+00) 3.45E-03 (4.88E-03) 3.41E-14 (1.16E-14) 2.96E-04 (1.48E-03) 3.72E-01 (5.60E-02) 0.00E+00 (0.00E+00)

– -3.53E+00 -1.47E+01 -1.00E+00 -3.32E+01 0.00E+00

f6
1.20E-014(1.52E-015) 1.44E-13 (3.06E-14) 1.11E-13 (7.87E-15) 2.12E+01 (4.02E-01) 2.06E+0 (4.40E-01) 0.00E+00 (0.00E+00)

– -2.15E+01 -6.18E+01 -2.64E+02 -2.34E+01 3.95E+01

f7
-7.28E+05(1.88E+04) -1.50E+03 (1.04E+01) -1.54E+03 (2.52E+00) -1.39E+03 (2.64E+01) -8.55E+02 (1.35E+01) -1.14E+03 (8.48E+00)

– -1.93E+02 -1.93E+02 -1.93E+02 -1.93E+02 -1.93E+02
w/t/l – 4/1/2 4/0/3 4/1/2 6/0/1 2/2/3

TABLE V
THE STATISTICAL RESULTS(FIRST LINE) AND THE t VALUES (SECOND LINE) OF OPTIMIZATION ERRORS ON500-DTEST FUNCTIONS.

500-D CSO CCPSO2 MLCC sep-CMA-ES EPUS-PSO DMS-PSO

f1
6.57E-23(3.90E-24) 7.73E-14 (3.23E-14) 4.30E-13 (3.31E-14) 2.25E-14 (6.10E-15) 8.45E+01 (6.40E+00) 0.00E+00 (0.00E+00)

– -1.20E+01 -6.50E+01 -1.84E+01 -6.60E+01 8.42E+01

f2
2.60E+01(2.40E+00) 5.79E+01 (4.21E+01) 6.67E+01 (5.70E+00) 2.12E+02 (1.74E+01) 4.35E+01 (5.51E-01) 6.89E+01 (2.01E+00)

– -3.78E+00 -3.29E+01 -5.29E+01 -3.55E+01 -6.85E+01

f3
5.74E+02(1.67E+02) 7.24E+02 (1.54E+02) 9.25E+02 (1.73E+02) 2.93E+02 (3.59E+01) 5.77E+04 (8.04E+03) 4.67E+07 (5.87E+06)

– -3.30E+00 -7.30E+00 8.23E+00 -3.55E+01 -3.98E+01

f4
3.19E+02(2.16E+01) 3.98E-02 (1.99E-01) 1.79E-11 (6.31E-11) 2.18E+03 (1.51E+02) 3.49E+03 (1.12E+02) 1.61E+03 (1.04E+02)

– 7.38E+01 7.38E+01 -6.10E+01 -1.39E+02 -6.08E+01

f5
2.22E-16(0.00E+00) 1.18E-03 (4.61E-03) 2.13E-13 (2.48E-14) 7.88E-04 (2.82E-03) 1.64E+00 (4.69E-02) 0.00E+00 (0.00E+00)

– -1.28E+00 -4.29E+01 -1.40E+00 -1.75E+02 7.85E+84

f6
4.13E-13(1.10E-14) 5.34E-13 (8.61E-14) 5.34E-13 (7.01E-14) 2.15E+01 (3.10E-01) 6.64E+00 (4.49E-01) 2.00E+00 (9.66E-02)

– -6.97E+00 -8.53E+00 -3.47E+02 -7.39E+01 -1.04E+02

f7
-1.97E+06(4.08E+04) -7.23E+03 (4.16E+01) -7.43E+03 (8.03E+00) -6.37E+03 (7.59E+01) -3.51E+03 (2.10E+01) -4.20E+03 (1.29E+01)

– -2.41E+02 -2.41E+02 -2.41E+02 -2.41E+02 -2.41E+02
w/t/l – 5/1/1 6/0/1 5/1/1 7/0/0 5/0/2

TABLE VI
THE STATISTICAL RESULTS(FIRST LINE) AND THE t VALUES (SECOND LINE) OF OPTIMIZATION ERRORS ON1000-DTEST FUNCTIONS.

1000-D CSO CCPSO2 MLCC sep-CMA-ES EPUS-PSO DMS-PSO

f1
1.09E-21(4.20E-23) 5.18E-13 (9.61E-14) 8.46E-13 (5.01E-14) 7.81E-15 (1.52E-15) 5.53E+02 (2.86E+01) 0.00E+00 (0.00E+00)

– -2.70E+01 -8.44E+01 -2.57E+01 -9.67E+01 1.30E+02

f2
4.15E+01(9.74E-01) 7.82E+01 (4.25E+01) 1.09E+02 (4.75E+00) 3.65E+02 (9.02E+00) 4.66E+01 (4.00E-01) 9.15E+01 (7.14E-01)

– -4.32E+00 -6.96E+01 -1.78E+02 -2.42E+01 -2.07E+02

f3
1.01E+03(3.02E+01) 1.33E+03 (2.63E+02) 1.80E+03 (1.58E+02) 9.10E+02 (4.54E+01) 8.37E+05 (1.52E+05) 8.98E+09 (4.39E+08)

– -6.04E+00 -2.46E+01 9.17E+00 -2.75E+01 -1.02E+02

f4
6.89E+02(3.10E+01) 1.99E-01 (4.06E-01) 1.37E-10 (3.37E-10) 5.31E+03 (2.48E+02) 7.58E+03 (1.51E+02) 3.84E+03 (1.71E+02)

– 1.11E+02 1.11E+02 -9.24E+01 -2.24E+02 -9.07E+01

f5
2.26E-16(2.18E-17) 1.18E-03 (3.27E-03) 4.18E-13 (2.78E-14) 3.94E-04 (1.97E-03) 5.89E+00 (3.91E-01) 0.00E+00 (0.00E+00)

– -1.80E+00 -7.51E+01 -1.00E+00 -7.53E+01 5.18E+01

f6
1.21E-12(2.64E-14) 1.02E-12 (1.68E-13) 1.06E-12 (7.68E-14) 2.15E+01 (3.19E-01) 1.89E+01 (2.49E+00) 7.76E+00 (8.92E-02)

– 5.59E+00 9.24E+00 -3.37E+02 -3.80E+01 -4.35E+02

f7
-3.83E+06(4.82E+04) -1.43E+04 (8.27E+01) -1.47E+04 (1.51E+01) -1.25E+04 (9.36E+01) -6.62E+03 (3.18E+01) -7.50E+03 (1.63E+01)

– -3.96E+02 -3.96E+02 -3.96E+02 -3.97E+02 -3.97E+02
w/t/l – 4/1/2 5/0/2 5/1/1 7/0/0 5/0/2

have participated in the CEC 2008 competition on Large Scale
Global optimization (LSGO) [43].

Based on the previous empirical analysis of the two param-
eters in CSO, the parameter settings used in the benchmarks
are summarized in Table III. The optimization errors on 100-
D, 500-D and 1000-D functions are summarized in Table
IV, V and VI, respectively. In all the three tables,t values
are listed together mean values and the standard deviations.
A negative t value means that the statistical results of the
optimization errors obtained by CSO are relatively smallerand
vice versa. If the difference is statistically significant smaller,
the correspondingt value is highlighted.w/t/l in the last row
means that CSO wins inw functions, ties int functions, and

loses inl functions.

The statistical results of the optimization errors show that
CSO has significantly better overall performance in compar-
ison with all the other five compared algorithms on 500-D,
1000-D functions. CSO and DMS-PSO have similar perfor-
mance on 100-D functions, and both outperform the rest four
algorithms. It seems that DMS-PSO is always able to find
the global optimum off1 and f5, regardless of the number
of search dimensions, but has poor performance on the other
five functions in comparison with CSO, especially when the
dimensionality becomes higher. In comparison, MLCC has
yielded the best results onf4, which is a shifted Rastrigin
function with a large number of local optima. Such outstanding
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performance onf4 should be brought about by the differential
evolution variant (SaNSDE) used in MLCC.

In addition, the convergence profiles of one typical separable
function (f1) and one typical non-separable function (f5) are
plotted in Fig. 8. It can be seen that, although the convergence
speed of the proposed is not so fast as the CCPSO2 or MLCC
at the very beginning, it is able to perform a relatively more
consistent convergence to continuously improve the solution
quality.

C. Scalability to higher dimensionality

From the statistical results of the optimization errors sum-
marized in Table IV, V and VI, it can be noticed that CSO has
shown very good scalability to the search dimension, i.e., the
performance does not deteriorate seriously as the dimension
increases.

To further examine the search ability of CSO on the
functions of even higher dimensions, e.g., 2000-D or even
5000-D, additional experiments have been performed onf1
to f6 of 2000 and 5000 dimensions.f7 is excluded from this
experiment for the reason that its global optimum is dimension
dependent and thus it is not easy to evaluate the scalability.

It must be stressed that optimization of problems of 2000
and 5000 dimensions is very challenging for CSO since it
has not adopted any particular strategies tailored for solving
large scale optimization, e.g., thedivide-and-conquerstrategy.
Furthermore, to the best of our knowledge, optimization of
problems of a dimension larger than 1000 has only been
reported by Li and Yao in [52], where 2000-dimensionalf1,
f3 andf7 have been employed to test their proposed CCPSO2.

TABLE VII
PARAMETER SETTINGS OFCSOON 2000-DAND 5000-DFUNCTIONS.

Parameter Dimension Separable Non-separable

m
2000-D 1000 1000
5000-D 1500 1500

ϕ
2000-D 0.2 0.15
5000-D 0.2 0.15

Separable functions includef1, f4, f5 and f6. Non-separable functions
include f2 and f3. Note that f5 is grouped as a non-separable function
because the product component becomes less significant withthe increase
of the dimension [52].

The parameter settings are listed in Table VII and the
statistical results of optimization errors are listed in Table VIII.
It can be seen that CSO continues to perform well even if
the dimension is higher than 1000, especially on the three
separable functionsf1, f4 andf6, together withf5.

In order to get an overall picture of the scalability of
CSO and the five compared algorithms, the mean optimization
errors obtained by the six algorithms on all test functions of
dimensions 100, 500 and 1000 are plotted in Fig 9, together
with the mean optimization errors obtained by CCPSO2 and
sep-CMA-ES on 2000-Df1 andf3 [52], as well as the mean
optimization errors obtained by CSO on 2000-D and 5000-D
f1 to f6. Unfortunately, we are not able to obtain the results of
the compared algorithms on all 2000-D and 5000-D functions
due to the prohibitively high time-consumption needed for
optimization of such large scale problems. Nevertheless, it can

TABLE VIII
STATISTICAL RESULTS OF THE OPTIMIZATION ERRORS OBTAINED BYCSO

ON 2000-DAND 5000-DFUNCTIONS.

D = 2000 D = 5000
f1 1.66E-20(3.36E-22) 1.43E-19(3.33E-21)
f2 6.17E+01(1.31E+00) 9.82E+01(9.78E-01)
f3 2.10E+03(5.14E+01) 7.30E+03(1.26E+02)
f4 2.81E+03(3.69E+01) 7.80E+03(8.73E+01)
f5 3.33E-16(0.00E+00) 4.44E-16(0.00E+00)
f6 3.26E-12(5.43E-14) 6.86E-12(5.51E-14)

Since the time cost of one single run on a 5000-D functions is extremely
expensive, the statistical results of optimization errorsare averaged over 10
independent runs.

be seen that CSO has shown the best scalability onf1 andf5,
where the mean optimization errors obtained by CSO on the
2000-D and 5000-D test problems are much better than those
obtained by the compared algorithms. Meanwhile, CSO shows
similar scalability to CCPSO2 and MLCC onf3 andf6.

D. Influence of neighborhood control

In CSO, as introduced in Section II, there exist two versions
for calculating the mean position̄Xk(t) in the learning strat-
egy, one global version̄Xg

k (t) and one local version̄X l
l,k(t),

where the calculation of̄X l
l,k(t) is based on a neighborhood

instead of the whole swarm, refer to (6). Although the effec-
tiveness ofX̄g

k (t) has already been verified by the empirical
results above, it is still very interesting to investigate the
influence of neighborhood control used in̄X l

l,k(t) on the
swarm diversity and thus the search performance.

With neighborhood control, the whole swarm is dynamically
divided into several neighborhoods, each neighborhood having
a local mean position vector. This will enhance the swarm
diversity in comparison with the original CSO where the
whole swarm shares a global mean position. Intuitively, a
higher degree of swarm diversity may help alleviate premature
convergence but can also slow down the convergence speed to
a certain extent.

For simplicity, the commonly usedring topology[22], [23],
[59], which has been shown to be an effective neighborhood
structure [60] is adopted here. In this topology, each particle
takes the two immediate neighbors to form a neighborhood
[61].

First, we investigate the influence of the neighborhood
control on the swarm diversity. In order to obtain measurable
observations, adiversity measureintroduced in [62], [63] is
adopted here to indicate the change of diversity during the
search process:

D(P ) =
1

m

m
∑

i=1

√

√

√

√

n
∑

j=1

(xj
i − x̄j)2

with

x̄j =
1

m

m
∑

i=1

(xj
i ),

(27)

whereD(P ) denotes the diversity of the swarmP , m is the
swarm size,n is the dimension of the decision space,xj

i is



RAN CHENG et al.: A COMPETITIVE PARTICLE SWARM OPTIMIZER FOR LARGE SCALE OPTIMIZATION 11

100 500 1000 2000 5000 10000
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

Dimension

O
pt

im
iz

at
io

n 
re

su
lt

 

 

CSO
CCPSO2
sep−CMA−ES
EPUS−PSO
DMS−PSO
MLCC

(a) f1

100 500 1000 2000 5000 10000
10

0

10
1

10
2

10
3

Dimension

O
pt

im
iz

at
io

n 
re

su
lt

 

 

CSO
CCPSO2
sep−CMA−ES
EPUS−PSO
DMS−PSO
MLCC

(b) f2

100 500 1000 2000 5000 10000
10

0

10
2

10
4

10
6

10
8

10
10

Dimension

O
pt

im
iz

at
io

n 
re

su
lt

 

 

CSO
CCPSO2
sep−CMA−ES
EPUS−PSO
DMS−PSO
MLCC

(c) f3

100 500 1000 2000 5000 10000
10

−15

10
−10

10
−5

10
0

10
5

Dimension

O
pt

im
iz

at
io

n 
re

su
lt

 

 

CSO
CCPSO2
sep−CMA−ES
EPUS−PSO
DMS−PSO
MLCC

(d) f4

100 500 1000 2000 5000 10000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Dimension

O
pt

im
iz

at
io

n 
re

su
lt

 

 

CSO
CCPSO2
sep−CMA−ES
EPUS−PSO
DMS−PSO
MLCC

(e) f5

100 500 1000 2000 5000 10000
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Dimension

O
pt

im
iz

at
io

n 
re

su
lt

 

 

CSO
CCPSO2
sep−CMA−ES
EPUS−PSO
DMS−PSO
MLCC

(f) f6

Fig. 9. The statistical results of optimization errors obtained by CSO, CCPSO2, MLCC , sep-CMA-ES, EPUS-PSO and DMS-PSOon 100-D, 500-D, 1000-D
f1 to f6 , together with the statistical results of optimization errors obtained by CCPSO2, sep-CMA-ES on 2000-Df1, f3 and the statistical results of
optimization errors obtained by CSO on 2000-D, 5000-Df1 to f6. Note that due to the logarithmic scale used in the plots, errors of 0 cannot be shown.

the value of thej-th dimension of particlei, and x̄j is the
average value of thej-th dimension over all particles.

It can be seen from Fig. 10 that the overall swarm diversity
of CSO with neighborhood control (denoted as CSO-n) is
higher than that of the original CSO, which is in consistency
with the expectation above.

To further assess whether the enhanced swarm diversity can
have a positive influence on the search performance of CSO-n,
additional numerical experiments have been conducted on 500-
D and 1000-D functions. Two-tailedt-test is implemented at
a significance levelα = 0.05 between the statistical results of
optimization errors obtained by CSO-n and CSO. A negative
t value means that the statistical results obtained by CSO-n
are relatively smaller and vice versa. The smaller statistical
results are highlighted.

TABLE IX
STATISTICAL RESULTS OF OPTIMIZATION ERRORS OBTAINED BYCSO-N

AND CSOON 500-DFUNCTIONS.

m = 250 CSO-n CSO t value
f1 2.71E-011(5.77E-012) 6.57E-23(3.90E-24) 2.35E+01
f2 4.61E+001(1.02E+000) 2.60E+01(2.40E+00) 3.85E+01
f3 5.37E+002(4.00E+001) 5.74E+02(1.67E+02 -1.08E+00
f4 3.95E+003(1.32E+002) 3.19E+02(2.16E+01) 1.36E+02
f5 4.04E-012(7.00E-013) 2.22E-16(0.00E+00) 2.89E+01
f6 4.90E-007(5.98E-008) 4.13E-13(1.10E-14) 4.10E+01
f7 -1.68E+006(8.17E+003) -1.97E+06(4.08E+04) 3.48E+01

In the first set of experiments, the same parameter settings

TABLE X
STATISTICAL RESULTS OF OPTIMIZATION ERRORS OBTAINED BYCSO-N

AND CSOON 1000-DFUNCTIONS.

m = 500 CSO-n CSO t value
f1 7.77E-001(2.30E-002) 1.09E-21(4.20E-23) 1.69E+02
f2 8.11E+001(6.48E-001) 4.15E+01(9.74E-01) 1.69E+02
f3 1.31E+007(7.74E+005) 1.01E+03(3.02E+01) 8.46E+01
f4 1.02E+004(5.51E+001) 6.89E+02(3.10E+01) 7.52E+02
f5 4.22E-002(1.77E-003) 2.26E-16(2.18E-17) 1.19E+02
f6 5.95E-002(6.32E-003) 1.21E-12(2.64E-14) 4.71E+01
f7 -2.58E+006(3.06E+004) -3.83E+06(4.82E+04) 1.09E+02

as in the original CSO have been used for CSO-n, refer
to Table III. The experimental results shown in Table IX
and Table X indicate that CSO-n is outperformed by the
original CSO. As discussed above, the neighborhood control
is expected to generate a higher degree of swarm diversity and
the experimental results in Fig. 10 has empirically confirmed
this expectation. Therefore, one possible reason for the inferior
performance of CSO using neighborhood control is that for
these test functions, the diversity of the global CSO is already
sufficient and therefore additional diversity may slow down
the convergence.

In the global version of CSO, the main source of swarm
diversity comes from the random pairwise competitions, where
the swarm size can be an important factor to determine the
amount of diversity. More specifically, a bigger swarm size is
able to provide more combinations of random pairwise compe-
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Fig. 10. The swarm diversity profiles during 500,000 FitnessEvaluations
(FEs) of CSO with neighborhood control (denoted as CSO-n) and the original
CSO on 500-D functions on a separable functionf1 and a non-separable
function f3 respectively.

titions, thus generating a higher degree of swarm diversity, and
vice versa. Following this line of thoughts, the performance
of CSO-n may be improved by reducing the swarm size.
Therefore, a second set of experiments have been conducted
using a different parameter setup, where the swarm size is set
to m = 150 for 500-D functions andm = 200 for 1000-D
functions, respectively.

TABLE XI
STATISTICAL RESULTS OF OPTIMIZATION ERRORS OBTAINED BYCSO-N

AND CSOON 500-DFUNCTIONS.

m = 150 CSO-n CSO t value
f1 1.51E-025(3.21E-027) 4.10E-023(9.28E-025) -2.20E+02
f2 5.23E+001(1.11E+001) 8.20E+001(4.53E+000) -1.24E+01
f3 7.93E+002(1.03E+002) 9.32E+002(4.15E+002) -1.63E+00
f4 4.18E+002(3.04E+001) 6.45E+002(2.66E+001) -2.81E+01
f5 3.11E-016(4.44E-017) 2.46E-003(4.93E-003) -2.49E+00
f6 4.09E-014(1.74E-015) 1.08E+000(1.41E-001) -3.83E+01
f7 -1.79E+006(1.28E+004) -2.10E+006(5.73E+003) 1.11E+02

TABLE XII
STATISTICAL RESULTS OF OPTIMIZATION ERRORS OBTAINED BYCSO-N

AND CSOON 1000-DFUNCTIONS.

m = 200 CSO-n CSO p value
f1 3.60E-018(9.38E-019) 5.22E-013(3.70E-013) -7.05E+00
f2 6.50E+001(1.10E+000) 1.03E+002(3.24E+000) -5.55E+01
f3 1.61E+003(7.96E+001) 1.95E+003(2.08E+002) -7.63E+00
f4 1.04E+003(4.85E+001) 2.14E+003(7.51E+001) -6.15E+01
f5 7.77E-016(0.00E+000) 2.46E-003(4.93E-003) -2.49E+00
f6 1.37E-010(1.84E-011) 3.03E+000(2.67E-001) -5.67E+01
f7 -2.90E+006(1.69E+004) -4.24E+006(3.05E+004) 1.92E+02

As shown by the statistical results of optimization errors
in Table XI and Table XII, after reducing the swarm size,
CSO-n is able to outperform the global CSO on most test
functions studied in this work, except forf7. Interestingly, the
performance of CSO onf7 is always better than CSO-n. As
described in [43],f7 is a very special function which has large
amount of random noise and its global optimum is unknown.
One possible reason for such a consequence is thatf7, as a
noisy function, is very sensitive to the swarm diversity, and the
original CSO, which maintains less swarm diversity, is ableto
achieve better performance on it.

To summarize, since the random pairwise competitions are
able to generate sufficient amount of diversity in the swarm,
the original CSO can work properly without using neighbor-

hood control, if a relatively large swarm size is used for large
scale optimization problems. However, use of neighborhood
control, which is able to further enhance diversity, can enable
us to use a smaller swarm size even for large scale problems,
which is very attractive in practice.

V. CONCLUSION

In this paper, we have introduced a new swarm algorithm
termed competitive swarm optimizer (CSO). The algorithm
is based on a pairwise competition mechanism and adopts a
novel update strategy, where neithergbest nor pbest is used.
Theoretical proof of convergence and empirical analysis of
search dynamics are given to understand the search mecha-
nisms of CSO. Despite its simplicity in algorithmic implemen-
tation, CSO has shown to perform surprisingly well on large
scale optimization problems, outperforming many state-of-the-
art meta-heuristics tailored for large scale optimization. Our
comparative studies conducted on 100-D, 500-D and 1000-D
CEC’08 benchmark problems demonstrate that CSO performs
consistently well on those test functions, especially in the high
dimensional cases. The performance of CSO has been further
demonstrated on 2000-D and 5000-D functions and the exper-
imental results show that CSO has reasonably good scalability
on these extremely high-dimensional problems. In addition, we
have empirically investigated the influence of neighborhood
control on the swarm diversity and search performance of
CSO, which suggests that neighborhood control can enhance
diversity and therefore enable us to user a smaller swarm size
for large scale optimization problems.

In the future, we will investigate the application of CSO
to solving other challenging optimization problems, such as
multi-objective problems [64] and many-objective problems
[65]. Application of CSO to complex real-world problems is
another important future work.
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