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A Competitive Swarm Optimizer for Large Scale
Optimization
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Abstract—In this paper, a novel competitive swarm optimizer
(CSO0) for large scale optimization is proposed. The algoriim is
fundamentally inspired by the particle swarm optimization (PSO)
but conceptually very different. In the proposed CSO, neitter
the personal best position of each particle nor the global b=
position (or neighborhood best positions) is involved in ugating
the particles. Instead, a pairwise competition mechanism si
introduced, where the particle that loses the competition
update its position by learning from the winner. To understand
the search behavior of the proposed CSO, a theoretical proof
of convergence is provided, together with empirical analyis
of its exploration and exploitation abilities showing that the

randomly generated withif0, 1]™; pbest;(t) and gbest(t)
are the best solution of theth particle found so far, often
known as thepersonal bestand the best solution found
by all particles so far, known as thglobal best respec-
tively. Kennedy has referred, R, (t)(pbest;(t) — X;(t)) and
caRa(t)(gbest(t) — X;(t)) as thecognitive component and
social component, respectively [5].

Due to its conceptual simplicity and high search efficiency,
PSO has attracted much research interest over the pastsecad
and has been successfully applied to a number of application

proposed CSO achieves a good balance between explorationsuch as water distribution network design [6], parameter

and exploitation. Despite its algorithmic simplicity, our empirical
results demonstrate that the proposed CSO exhibits bettenerall
performance than five state-of-the-art metaheuristic algathms
on a set of widely used large-scale optimization problems ahis
able to effectively solve problems of dimensionality up to G0O.

Index Terms—Particle swarm optimization, competition, learn-
ing, convergence analysis, competitive swarm optimizer,atge
scale optimization

I. INTRODUCTION

optimization in suspension system [7], resource allocgi®),
task assignment [9], DNA sequence compression [10] and
many others [11]. However, it has been found that PSO
perform poorly when the optimization problem has a large
number of local optima or is high-dimensional [12]. The
above weaknesses can usually be attributed to the premature
convergence that often occurs in PSO [13].

As a typical population-based optimization technique,-con
vergence speed and global search ability are two critical
criteria for the performance of PSO algorithms. In order to

ARTICLE swarm optimization (PSO) is one powerful andilleviate premature convergence by achieving a good balanc
widely used swarm intelligence paradigm [1] introducefhst convergence and global search ability, a number of PSO
by Kennedy and Eberhart in 1995 [2] for solving optimizationariants have been suggested, which can be largely claksifie
problems. The algorithm is based on a simple mechanismo the following four categories [13]:
that mimics swarm behaviors of social animals such as bird1) Adaptation of the control parametets, ¢; andc, are

flocking. Due to its simplicity in implementation, PSO has

withessed a rapid increase in popularity over the past ascad
PSO contains a swarm of particles, each of which has a

position and velocity flying in am-dimensional search space,

representing a candidate solution of the optimization |emb

to be solved. To locate the global optimum, the velocity and
position of each particle are updated iteratively using the

following equations:

+ caRa(t)(gbest(t) — X;(t)),
Xi(ﬁ-i-l):Xi(ﬁ)-f—Vi(ﬁ-f—l), (2)

wheret is the iteration (generation) numbé,(t) and X;(¢)

represent the velocity and position of thiéh particle, re-
spectively;w is termed inertia weight [3]¢; and ¢o are the
acceleration coefficients [4R; (t) and Rx(t) are two vectors
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the three control parameters in the canonical PSO, as
shown in (1).w, termed the inertia weight, was first
proposed by Shi and Eberhart to balance between global
search and local refinement [14]. The inertia weight
was further modified by linearly decreasing it from 0.9
to 0.4 over the search procedure [15]. Another important
modification ofw is the introduction of fuzzy inference
[16].

Methods for adapting; andcs (called the acceleration
coefficients) have also been suggested. Time-varying
acceleration coefficients were first introduced by Rat-
naweeraet al. in [17]. Similarly, a time-varying PSO
based on a novel operator was introduced in [18].
Most recently, a multiple parameter control mechanism
has been introduced to adaptively change all the three
parameters in [19].

Modifications in topological structures. The motivation
of introducing topological structures in PSO is to en-
hance the swarm diversity using neighborhood control
[20], [21]. Several topological structures have been
proposed [22], including the ring topology and the von
Neumann topology. In [23], a fully informed PSO (FIPS)
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was developed, where the update of each particle ds a source of diversityp; largely determines how well
based on the positions of several neighbors. AnothBSO is able to balance exploration and exploitation in the
important example is the comprehensive learning PS$@arch procedure. Having noticed this, Mendes and Kennedy
(CLPSO) introduced in [24], where particles updatproposed a modified PSO, whesg is the best particle in the
each dimension by learning from different local besteighborhood of a particle rather than a combinatiogteft
positions. Recently, a distance-based locally informexhd pbest; [23]. Out of similar considerations, Lianet. al
particle swarm optimizer was proposed specifically talso introduced a PSO variant withogliest [24], where the
tackle multimodal problems in [25]. update strategy aims to learn fraphest; only.

3) Hybridization with other search techniques. Since dif-
In order to address premature convergence, a step further

ferent search techniques have different strengths, it is a

natural idea to hybridize PSO with other search meth1'gNt be to completely get rid ofbest and pbest;. An

ods. One straightforward idea is to combine PSO wi ttempt was mgde along this line in a multi-swarm framework
different evolutionary algorithms, such as genetic alge-2: Where neithetbest nor pbest; has been used. In this

rithms [26], differential evolution [27], and ant Colonymult{—svyarm frameyyork, the up_date of particles 'S driven by
optimization [28], [29]. Another important idea is tod Pairwise competition mechanism between particles fram th

integrate PSO with local search techniques [30], [31]. o swarms. After each competition, the loser will be update

addition, various search operators based on sociologi@gf:orqmg to _the information f_rom the winner swarm, while
or biological concepts have also been proposed, su winner will be updated using a mutation strategy. In the

as the niching PSO [32], cultural-based PSO [33] an(a(periments, the framework showed promising performance

the aging theory inspired PSO (ALC-PSO) [13]. Othe?" "élatively high-dimensional problems.

h)/brld PSO variants include PSO with Gaussian muta- F0||0wing the idea in [42]' in this work, we exp|ore the

tion [34], PSO with chaos [35], orthogonal learning PSQ@se of the competition mechanism between particles within

(OLPSO) [36], PSO with a moderate-random-sear@he single swarm. In addition, the particle loses a comipatit

strategy [37], and a very recently proposed PSO witil| learn from the winner particle instead of frogbest or

a periodic mutation strategy and neural networks [38]ypest;. Since the main driving force behind this idea is the
4) Multi-swarm PSO. One early work on multi-swarm PSQajrwise competition mechanism between different paasicl

was reported in [39], where the sub-swarms cooperajfid neitheibest nor pbest; is involved in the search process,

to solve large scale optimization problems. In [30}we term the proposed algorith@ompetitive Swarm Optimizer

a dynamic multi-swarm PSO (DMS-PSO) algorithnfcso)to avoid ambiguity. CSO distinguishes itself from the

is proposed to dynamically change the neighborho@@nonical PSO mainly in the following aspects:
structure for a higher degree of swarm diversity, even

with a very small swarm size. More multi-swarm PSO
variants can be found in [40], [41].

Since most PSO variants introduce new mechanisms or
additional operators, the enhancement of search perfarian
often at the cost of increasing the computational complexit
Furthermore, due to the strong influence of the global best
position gbest on the convergence speed [39], premature 2)
convergence remains a major issue in most existing PSO
variants. To take a closer look into the influencegbést on
premature convergence, we rewrite (1) as follows:

1) In the canonical PSO, the dynamic system is driven
mostly by the global best positiogbest and individual
best positionpbest;, whilst in CSO, there is no more
gbest or pbest;. Instead, the dynamic system is driven
by arandom competitiomechanism, where any patrticle
could be a potential leader;

In PSO, the historical best positions are recorded, whils
in CSO, there is no memory used to memorize the
historical positions. By contrast, the particles that lase
competition learn from the winners in the current swarm

only.
Vit +1) = wVi(t) + 01(p1 — Xi(t)), ®3)

where, The rest of this paper is organized as follows. Section Il

01 = c1R1(t) + caRa(t), presents the details of CSO, followed by an empirical anglys
c1R1 (1) of search behaviors and a theoretical convergence proof in

PL= LR + RQ(ﬁ)pb“ti(t) (4) Section lll. Section IV first presents some statistical ssu
e Ra(t) that compare CSO with a few state-of-the-art algorithms on
gbest(t). the CEC’08 benchmark functions of dimensionality up to 1000

1R (t) + e2Ra(t) [43]. Empirical investigations on the influence of the paesen

From (3), it can be noticed that the difference betwpen settings are also conducted. The search ability of CSO has
and X; serves as the main source of diversity. More preciselyeen challenged further with the test functions of 2000 and
the diversity ofp, itself is generated by the difference betweeB000 dimensions, which, to the best of our knowledge, are
pbest; and gbest, refer to (4). However, in practice, duethe highest dimensions that have ever been reported in the
to the global influence ofybest, pbest; is very likely to evolutionary optimization literature. Finally, the influge of
have a value similar to or even the same @est, thus neighborhood control on the search performance has been
considerably reducing the swarm diverisity. In other wordsmvestigated. Conclusions will be drawn in Section V.
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Il. ALGORITHM strategy:

, . . i ) Vit +1) = Ry(k, t)Vii(t
Without loss of generality, we consider the following min- L ) 1k DVii ()

imization problem: + Rg(k,zf)(X@k(t) — Xuk(t)) (6)
+ @Rd(k, t)(Xk(t) — lek(t)).
minf = f(X) (5 Asa result, the position of the loser can be updated with the
st. XedX new velocity:
Xip(t+1) = Xy x(t) + Vig(t+1), (7)

where X € R" is the feasible solution set; denotes the
dimension of the search space, i.e., the number of decisiwhereR; (k,t), Ra(k,t), R3(k,t) € [0,1]™ are three randomly
variables. generated vectors after theth competition and learning

In order to solve the optimization problem above, a swarfrocess in generatian X () is the mean position value of the
P(t) containsm particles is randomly initialized and it- relevant particlesy is a parameter that controls the influence
eratively updated, wheren is known as the swarm sizeof X (t). Specifically, forXy(t), a global version and a local
and ¢t is the generation index. Each particle has an version can be adopted:
dimensional position,X;(t) = (xi1(t),xi2(t),....,zin(t)), 1) X7 (t) denotes the global mean position of all particles
representing a candidate solution to the above optimizatio in P(t);
problem, and ann-dimensional velocity vectorV;(t) = 2) X!, (t) means the local mean position of the particles
(vi,1(t),vi2(t), ..., vin(t)). In each generation, the particles in a predefined neighborhood of particle
in P(t) are randomly allocated intex/2 couples (assuming |t has been found that neighborhood control is able to help
that the swarm sizen is an even number), and afterwardsimprove PSO’s performance on multimodal function by main-
a competition is made between the two particles in eaghining a higher degree of swarm diversity [21]. Similarly,
couple. As a result of each competition, the particle havingle motivation to introduce neighborhood controlXi(¢) is
a better fitness, hereafter denotedveisner, will be passed to increase swarm diversity, which potentially enhances th
directly to the next generation of the swarf(t + 1), while  search performance of CSO. In the remainder of this paper,
the particle that loses the competition, teser, will update the global versionX?(t) is adopted as a default setup unless
its position and velocity by learning from the winner. Aftefotherwise specified. The performance of CSO using the local
learning from the winner, the loser will also be passed \QarsmnXl (1) will be investigated in Section IV.D.
swarmP(t+1). This means that each particle will participate |n order to gain a better understanding of the learning

in a competition only once. In other words, for a swarm size @frategy in CSO, we provide below more discussions about
m, m/2 competitions occur so that alk particles participate (g).

in one competition once and_ the position and veloc!tyn_qﬁ 1) The first partR; (k,t)Vi..(t) is similar to theinertia
particles will be updated. Fig. 1 illustrates the main idéa o termin the canonical P7SO, refer to (1), which ensures
CSO. the stability of the search process. The only difference is
that the inertia weight in PSO is replaced by a random
Competition — Learning vector 11(t) in CSO.
- 2) The second parRs(k,t)(Xwx(t) — Xik(t)) is also
Winner Updated loser calledcognitive componerafter Kennedy and Eberhart.

Different from the canonical PSO, the particle that loses
the competition learns from its competitor, instead of
from its personal best position found so far. This mech-
anism may be biologically more plausible in simulating
animal swarm behaviors, since it is hard to require
that all particles memorize the best position they have
Swarm P(t) Swarm P(t+1) experienced in the past.

3) The third partpRs(k,t)(X(t) — X, (t)) is termed
social componentagain after Kennedy and Eberhart.
Fig. 1. Thed ge?erall idtefz ?f CSICR- Duringt each g(ﬂfnera(;i,qn,icm*/r\tf?re However, the particle that loses the competition learns
palie fandomy seleced flom e crent swer fof st A1 from the mean position of the current swarm rather than
learning from the winner, while the winner is directly padde the swarm the gbest, which requires no memory and makes good

of the next generation. sense, biologically.
With the descriptions and definitions above, the pseudo
Let us denote the position and velocity of the winner ancbde of CSO algorithm can be summarized in Algorithm 1.
loser in thek-th round of competition in generatiohwith We can see that CSO maintains the algorithmic simplicity
X k(t), Xix(t), and Vi, x(¢), Vi k(t), respectively, where of PSO, which is quite different from most existing PSO
k=1,2,...,m/2. Accordingly, after thek-th competition the variants. Apart from the fithess evaluations, which is peabl
loser’s velocity will be updated using the following leargi dependent [44], [45], the main computational cost in CSO is

©o

t=t+1
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Algorithm 1 The pseudocode of the Competitive Swarm Opsompetition, whilstgbest(t) is deterministically updated and
timizer (CSO).t is the generation numbel. denotes a set of shared by all particles, angbest;(t) is also deterministically

particles that have not yet participated in a competitiomelds
otherwise specified, theerminal conditionis the maximum
number of fitness evaluations.

1. t=0;

2: randomly initialize P(0);

3: while terminal conditionis not satisfieddo

4. calculate the fitness of all particles 1(t);
5. U=P(t), P(t+1)=0;

6: while U # 0 do

7: randomly choose two particles; (¢), X2(t) from U;
& If f(X1(t)) < f(Xa(t)) then

9: Xuw(t) = X1(t), Xi(t) = Xa(t);

10: else

11: Xu(t) = Xa(t), Xi(t) = X1(¢);

12: end if

13: add X, (¢) into P(t + 1);

14: updateX;(¢) using (6) and (7);

15: add the updated; (¢ + 1) to P(¢t + 1);
16: removeX(t), Xz(t) from U;

17.  end while

18 t=t+1;

19: end while

the update ofX;(¢), which is an inevitable operation in most
swarm or population based evolutionary algorithms [2],J446
[48]. Consequently, the computational complexity of CSO is

O(mn), wherem is the swarm size and is the search
dimensionality.

1. SEARCH DYNAMICS ANALYSIS AND CONVERGENCE
PrROOF

updated and always used by partiéleOn the other hand,
although X (¢) is shared by several particles, it depends on
the mean current position of the whole swarm, which will be
less likely to introduce bias towards any particular péetic
Finally, it is noted that in CSO, only half of the particlesliwi
be updated in each generation, while in PSO, all particles ar
updated.

To illustrate the above intuitive observation, three tgpic
cases are considered below to show how CSO is potentially
able to perform more explorative search than the canonical
PSO.

5 40 | pl, = peteOatest®
;o pbest;(!);gbsst(!)

[ Pu

30 -

10—

Global Optimum

a
U T T T T T T T T T 1

10 20

Fig. 2. [lllustration of the search dynamics of the canoniP&dO on a
multimodal optimization problem. In this casghest(¢) is in a local optimum
region and the two particles)(¢) andi(t) is attracted into this region.

Let us first consider a situation whegest(t) is trapped

In order to better understand the search mechanism in C$®a local optimum, as illustrated in Fig. 2. For partiéle),
we will carry out empirical studies on its search dynamics byince bothX;(¢) and pbest;(t) are located inside the local
comparing it with the canonical PSO. In addition, a thecsgti optimum region, the particle will move towards the local
proof of convergence will be given, which shows that CSQiptimum position recorded bybest(t). By contrast, although

similar to the canonical PSO, will converge to an equilibriu

both X;(t) and pbest;(t) are located outside the optimum

Note, however, that this equilibrium is not necessarily thegion, particlew(t) will stil move in a wrong direction

global optimum.

A. Analysis of search dynamics

1) Exploration: Exploration is desirable in the early stagé®MoVe thegbest
of optimization to perform global search and locate the-op

mum regions. To examine the exploration ability of CSO,
reformulate (6) into a form similar to (3):

Vit +1) = Ra(k,t)Vi(t) + 02(p2 — Xi(t)), (8)
then the following expression can be obtained:
0 = Ro(k,t) + @Rs(k,t)
RQ (ka t) SOR?) (ka t) v
= Xw(t X(t).
P2 = Bt t) + pRatet) D T Rolt) + oRa (kD) ((3)

towards the local optimum due to the dynamics driven by
gbest(t).

A natural idea to avoid the situation shown in Fig. 2 is to
(t) from the update strategy so that particles
ill learn from pbest(t) only. This methodology has already

een adopted by Lianet al [24]. In this way, particle/(¢) is
able tofly overthe local optimum, refer to Fig. 3. Without
gbest(t), PSO seems to be in a better position to perform
exploration.

However, althoughybest(t) is removed pbest(t) can still
attract the particles into a local optimum region, limitiitg
ability to explore the whole landscape. Let us consider the
situation shown in Fig. 4. In iteratiof both particles reside
inside the local optimum region, including theibest(t). In
iteration¢ + 1, coincidentally, particlew(t + 1) manages to

Compared to (4), it can be observed that (9) has better chanoave outside the local optimum region and its new position is
to generate a higher degree of diversity. On the one hand, (¢ + 1). However, since the fitness value @fest,, (t + 1)
particle X, (¢) is randomly chosen from the swarm before thes still better thanX,, (¢ + 1), pbest,(t) is not updated. As
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Fig. 3. lllustration of a situation where search is perfonie a multimodal Fig. 5. lllustration of a situation where search is perfodnire a multimodal

space using a PSO variant withagifest. In this case, particlé will fly over  space using a PSO variant with neithigrest(t) nor pbest(t) (CSO). In this

the global optimum region due to the attraction of gitest,,. case, particld(t) is only attracted by particlev(¢), thereby flying over the
local optimum region.

é or According to the definitions ofibest andpbest in the canon-

ical PSO, the following relationship can be obtained:
flgbest(t)) < f(pbestu (1)) < f(Xuw(t)),
f(gbest(t)) < f(gbesti(t)) < f(Xu(t)).

Whent becomes very large in the late search stage, the fol-
lowing relationship betweepbest., (t), pbest;(t) andgbest(t)

30 - (11)

20 -

holds:
pbest,, (t) = gbest(t), (12)
10 pbest;(t) ~ gbest(t)
Global Optimum Let
A . . . . . | .
o B A T s AF(t) = [F(Xu(t) — f (92681;)(It) st
X gbes gbes
= £ (8) = f( . )
Fig. 4. lllustration of a situation where search is perfotnie a multimodal best(t best (ﬁ
space using a PSO variant withogliest(¢). In this case, thepbest,(t) of ~ | f(Xi(1) — f(g est(t) + pbest ))| (13)
particle w(t) is located in a local optimum region, serving a®eal gbest. 2
As a result, both particleft) andw(t) will be attracted bypbest., (t). — |f(Xl (t)) — f(pll)|a
AF(t) = |f(Xi(t) — f(Xuw(?))]
= [f(Xu(®) = f(PL)],

a consequencepest,,(t) continues to serve as aitractor,

which will pull particlew(t + 1) back into the local optimum
region again. In this situatioppest.,, (t) has played the role of
alocal gbest, although nggbest(t) is adopted. In comparison,

where p} is the expected value qf; in (4) andp} is the
expected value ops in (9) with ¢ = 0. Then the following
relationship can be obtained from (10), (11) and (12):

both the situations as shown in Fig. 2 and Fig. 4 can AFy(t) < AF (). (14)
be avoided by CSO because batbest(t) and pbest(t) are B
removed, refer to Fig. 5. The relationship in (14) indicates that CSO, in comparison

with the canonical PSO, has a better ability to exploit the

2) Exploitation: Exploitation is required in the later search, -, gaps between two positions whose fitness values are
stage to refine the solution found at the exploration stage. iery similar

analyze the exploitation behavior of CSO, we randomly pic
up two particlesw and! from the swarm and the following
relationship holds: B. Theoretical convergence proof
Similar to most theoretical convergence analysis of PSO
[49]-[51], a deterministic implementation of CSO is consid
F(Xu(t) < f(X1(¢)), (10) ered to theoretically analyze its convergence properghduld
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also be pointed out that the proof does not guarantee threglobal) has been found, so that no more updatepfuiill

convergence to the global optimum. happen.
For any particlei in P(t), it can have the following two  Convergence means that the particles will eventuallyesettl
possible behaviors after participating in a competition: down at the equilibrium poing*. From the dynamical system
1) Xi(t+1) = X;(t), if X;(t)is a winner; theory, we can know that the convergence property depends
2) Xi(t + 1) is updated using (6) and (7), iX;(t) is a On the eigenvalues of the state matrx
loser. ) 3 1
In caseX;(t) is a winner, the particle will not be updated. A (5 —OA+ 2= (21)

Therefore, we only need to consider the case WA&Kt) \yhere the eigenvalues are:

is a loser and then updated. Without loss of generality, we

can rewrite (6) and (7) by considering an one-dimension A\ = % ,ng%
deterministic case: ., (22)

i p=3-g-
Vit +1) = SVi(t) - .
12 The necessary and sufficient condition for the convergence,
+ = (Xu(t) — X5(1)) 15 i.e., the equnlbrlum point is a stable attractor, is thet| < 1
21 (15) and|\,| < 1, leading to the result:
+90§(X(t) - Xi(1)), 0> 0, (23)

Xilt+1) = Xi(t) + Vit + 1), where if 6 is substituted byy using (16), the condition for
Where% is the expected value @t;, R, andR3, X,,(t) is the convergence oip is:

position of the winner in the competition with tlieh particle. @ > —1. (24)
Theorem 1. For any giveny > 0, the dynamic system Therefore,p > 0 is a sufficient condition for the convergence
described by (15) will converge to an equilibrium. of the system. O
Proof. Let From Theorem 1, we can conclude that the algorithm will
converge to an equilibrium regardless the exact valug, &fs
14+ . . .
0= — long asp > —1. In this work, only non-negative > 0 will
(16) be adopted.
L x.m+—2—x0)
P=1st 1+ ’ v oE
N . EXPERIMENTAL STUDIES
then (15) can be simplified to: . . . _
1 In this section, we will perform a set of experiments
Vit +1) = =Vi(t) + 0(p — X;(t)) conducted on the seven benchmark functions proposed in the
2 (17) cecos special session on large scale optimization proslem
Xi(t +1) = Xi(t) + Vi(t + 1), [43]. Among the seven functionsf; (Shifted Sphere).f,

The search dynamics described in (17) can be seen atShifted Rastrigin) andfs (Shifted Ackley) are separable
dynamical system, and the convergence analysis of themsysféinctions, while the other four functions (Schwefel Prob-
can be conducted by using the well-established theories l6f), /3 (Shifted Rosenbrock)fs (Shifted Griewank) and
stability analysis in dynamical systems. To this end, weritew (Fast Fractal) are non-separable. Note tfrabecomes more

system (17) in the following form: separable as the dimension increases, because the product
component off; becomes increasingly less significant [52]
y(t+1) = Ay(t) + Bp, (18) with an increasing dimension. Therefore, in the following

experiments, if the dimension is equal to or higher than 500,

here
W f5 will be regarded a separable function.
() = Vi(t) s ; 0 B 0 (19) At first, experiments are conducted to empirically under-
v\ = X@) |’ - % 1—0 |7 |6’ stand the influence of the two parameters in CSO, namely,

) - ] the swarm sizem and the social factotp. Then, CSO is
where A is calledstate matrixin dynamical system theory, compared with a few recently proposed algorithms for large
is called external inputthat drives the particle to a specificscale optimization on 100-D, 500-D, and 1000-D benchmark
position andB is calledinput matrix that controls external fynctions. Afterwards, regarding the scalability to séadi-

effect on the dynamics of the particle. mensions, CSO is further challenged on 2000-D and 5000-D
If there exists arequilibriumy* that satisfieg)"(¢ + 1) =  functions. Finally, the influence of neighborhood contral o
y*(t) for anyt, it can be calculated from (18) and (19):  csO's swarm diversity and search performance is investityat
y=[0 p], (20) The experiments are implemented on a PC with an Intel

Core i5-2500 3.3GHz CPU and Microsoft Windows 7 En-
which means that the particles will finally stabilize at tlee terprise SP1 64-bit operating system, and CSO is written in
position, provided thap is constant, i.e., an optimum (locallanguage C on Microsoft Visual Studio 2010 Enterprise.
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All statistical results, unless otherwise specified, arerav that CSO performs well on 500-D functions with a swarm size
aged over 25 independent runs. For each independent ramgund 150, which is smaller than the swarm sizes adopted in
the maximum number of fitness evaluations (FEs), as reco@EPS02, DMS-PSO and other PSO variants, though CSO is
mended in [43], is set t&000 « n, wheren is the search a single-swarm algorithm without arad hocmechanism for
dimension of the test functions. In the comparisons betweksmge scale optimization. More interestingly, when the swa
different statistical results, two-tailedtests are conducted atsize is bigger than some specific values (e.g. 100/fprthe
a significance level ofr = 0.05. optimization performance begin to deteriorate. The redson
that with a bigger swarm size, more FEs (fithess evaluations)
have to be performed in each generation. Since the terminal
condition in this experiment is the maximal number of FEs,
a larger swarm size means a smaller number of generations.
This also implies that the performance of CSO does not rely
much on a large swarm size. From Fig. 6, we can also see
7 that a swarm size smaller than 100 might be too small for
wl 500-dimensional problems. Based on the observations and

: discussions above, the swarm size should not be smaller
. than 200 for real-world large scalé>(> 500) optimization
[ W e problems.

Tal, g x

S — 2) Social factor: In the following, we investigate the in-
Swam size Swam sze fluence of thesocial componenby varying thesocial factor
@ f2 (b) f3 . To this end, simulations have been conducted on the four
functions with the swarm size: varying from 200 to 1000
and ¢ varying from 0 to 0.3.
- N From the statistical results summarized in Table |, we can
: o —— see that the best statistical results are the diagonal alsrire
wh L the table, which implies that there exist a correlation leetw
LS m and . Additionally, it can also be noticed that the non-
L ;' separable functionsf{ and f3) require a smallerp than the
L separable functionsf( and fg) to achieve good performance.
T P samee " PP P aawe ™ ™ The reason might be that separable functions are easier to
© fu (d) fo optimize, as a result, a biggerwould work better because it
leads to faster convergence. The best combinations oleserve
from Table | are summarized in Table II.

A. Parameter settings

5 B B
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Fig. 6. Statistical results of optimization errors obtain€SO on 2 non-
separable functiongz, f3 and 2 separable functionf, fs of 500 dimensions
with different swarm sizesn varying from 25 to 300.

0.3

1) Swarm sizeLike most swarm optimization algorithms, e
the swarm size is an indispensable parameter. With a small I Lo
swarm size, the particles tend to converge very fast before "
the search space is well explored, thus leading to premature o
convergence; however, if the swarm size is too big, a large
number of FEs will be required during each generation, oos| +*
which may become impractical for computationally expeasiv ol
problems. oo

e ) 200 300 400 500 600 700 800 900 1000
m

Generally, the swarm size is empirically specified. For
example, in CCPSO2 [52], multi-swarms were adopted with a
swarm size 30 for each swarm, and for 500-D functions, thé. 7. Fitting curves describing the relationship betwéies social factor

and swarm sizen that lead to the best search performance using the
number of swarms varied from 4 to 50, creating an (:1veraasl,mthmIC linear regression analysis.
size around 240; in DMS-PSO [30], a larger swarm size 450
was adopted for the optimization of 500-D functions. For a deep insight into the relationship between the optimal

To gain empirical insight into the influence of the swarmpair of ¢ andm, a logarithmic linear regression analysis has
size on the search performance of CSO, the swarm size hagn performed to model the relationship betweerand
been varied from 25 to 300 for the four CEC'08 functiongsing the data in Table II, as shown in Fig. 7. Based on the
f1, f2, f3 and fe of search dimension 500. Among the foukegression analysis result, the following empirical sstipr
functions, f; and fs are separable and the other two are Nons and swarm sizen is recommended:
separable. To remove the influence of saxial component .

; o . e(m) =0 if m <100,

@ is set to0 in this set of experiments. otherwise

Fig. 6 shows the statistical results of the optimizatiomesr p(m) € [pr(m), v (m)] wis
obtained by CSO with different swarm sizes It can be seen  wherep;(m) and ¢ (m) are the lower and upper bound

(25)
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TABLE |

STATISTICAL RESULTS (MEAN VALUES AND STANDARD DEVIATIONS) OF OPTIMIZATION ERRORS OBTAINED BYCSOON 2 NON-SEPARABLE FUNCTIONS

f2, f3 AND 2 SEPARABLE FUNCTIONS(], fo OF 500DIMENSIONS WITH THE SWARM SIZEm VARYING FROM 200TO 1000AND ¢ FROMO TO 0.3.

Swarm size| Function =0 p=0.1 p=0.2 ©=0.3
f2 4.79E+01(1.97E+00)| 8.26E+01(2.85E+00)| 8.58E+01(3.48E+00)| 8.45E+01(1.27E+00)
m = 200 f3 5.95E+02(1.55E+02) | 8.25E+02(5.28E+01)| 1.07E+07(4.57E+06)| 4.33E+09(6.06E+08)
f 1.08E-09(2.26E-10) | 4.73E-23(8.70E-25) | 1.51E+01(1.77E+01)| 3.50E+04(3.77E+03)
fe 3.24E-06(2.96E-07) | 3.57E-13(1.02E-14) | 2.78E+00(1.75E-01)| 1.04E+01(7.18E-01)
fo 6.09E+01(1.06E+00)| 5.47E+01(3.46E+00)| 7.41E+01(7.92E-01)| 6.09E+01(1.06E+00)
m = 400 f3 1.31E+06(1.22E+05)| 4.90E+02(1.27E-01)| 5.01E+03(6.21E+02)| 2.75E+08(3.96E+07)
f 3.17E+00(3.86E-01) | 4.38E-16(5.76E-17) | 3.22E-22(2.41E-23) | 1.29E+03(2.69E+02)
f6 2.94E-01(1.76E-02) | 1.49E-09(4.36E-11) | 8.82E-13(1.42E-14) | 4.00E+00(1.85E-01)
f2 6.52E+01(7.68E-01) | 2.74E+01(3.76E+00)| 6.72E+01(1.26E+00)| 7.17E+01(8.32E-01)
m = 600 f3 2.75E+08(3.96E+07)| 4.92E+02(4.00E-01) | 1.39E+03(3.84E+02)| 5.28E+07(1.09E+07)
f 3.26E+02(2.84E+01)| 2.57E-08(1.69E-09) | 5.46E-22(2.72E-23) | 3.73E+01(1.61E+01)
fe 3.33E+00(3.07E-02) | 1.27E-05(6.24E-07) | 1.10E-12(1.48E-14)| 1.91E+00(8.08E-02)
f2 7.12E+01(7.47E-01) | 3.22E+01(4.68E-01) | 6.11E+01(1.61E+00)| 6.89E+01(7.57E-01)
m = 1000 f3 1.40E+09(1.26E+08)| 6.43E+02(1.68E+01)| 5.97E+02(6.90E+01)| 8.34E+06(1.76E+06)
f1 5.74E+03(4.94E+02)| 1.19E-02(5.35E-04) | 7.26E-12(2.89E-13)| 2.01E-18(7.69E-19)
fe 6.75E+00(4.61E-02) | 9.58E-03(3.70E-04) | 1.60E-07(8.03E-09) | 2.55E-11(5.88E-12)

Two-tailed t-tests have been conducted between the statistical résuech row. If one result is significantly better than all tiker errors, it is highlighted.
Note that the statistical results are shown in the ordef.0ffs (non-separable functions) antl, fs (separable functions), to clearly see the different
values for non-separable and separable functions.

of the recommended social factor that can be determine” =~

follows:

THE BEST COMBINATIONS OF THE SWARM SIZEn AND THE SOCIAL

wr(m) = 0.141og(m) — 0.30
wr(m) = 0.271log(m) — 0.51
pr(m), pr(m) =0

TABLE Il

(26)

Fitness Error

—%—CSO

== MLCC

FACTOR¢ IN THE OPTIMIZATION OF 500-D f1, f2, f3 AND f6.

©maz and e, denote the maximal and minimal that perform best with
correspondingn, respectively.

PARAMETER SETTINGS FOR THE SEVEN FUNCTIONS 0£00-D, 500-D

TABLE Il

AND 1000-D.

@) f1

(b) f5

25
x10°

m =200 | m =400 | m =600 | m = 1000 Fig. 8. The convergence profiles of CSO, CCPSO2 and MLCC or:(9
Pmin 0 0.1 0.1 0.1 and f5
Pmaz 0.1 0.2 0.2 0.3

the CEC’08 special session on large scale optimization [43]
have been adopted.

Among the compared algorithm, the CCPSO2 [52] and

the MLCC [53] are designed in the cooperative coevolution

(CC) framework [56], which has been proposed to solve

high-dimensional problems by automatically implementimg

Parameter| Dimensions | Separable function§ Non-separable functiong . L .
100D 100 100 divide-and-conquestrategy [57]. Specifically, in both algo-
m fg&% ggg ggg rithms, random grouping technique is used to divide the @hol
100-D 0 0 decision vector into different subcomponents, each of Wwhic
2 fg&% (?-115 %015 is solved independently. In CCPS0O2, a modified PSO using

Cauchy and Gaussian distributions for sampling around the
personal best and the neighborhood best positions is atlopte
as the core algorithm to evolve the CC framework whilst
in MLCC, a self-adaptive neighborhood search differential
evolution (SaNSDE) is adopted.

The sep-CMA-ES is a simple modification of the origi-

In order to verify the performance of CSO for large scaleal CMA-ES algorithm [58], which has been shown to be
optimization, CSO has been compared with a number of theore efficient, and to scale surprisingly well on some high-
state-of-the-art algorithms tailored for large scale mjtation dimensional test functions up to 1000 dimensions [54]. EPUS
on the CEC’08 test functions with dimensions of 100, 500 arlSO and DMS-PSO are another two PSO variants, where the
1000. The compared algorithms for large scale optimizatidormer adjusts the population size according to the search
include CCPSO2 [52], MLCC [53], sep-CMA-ES [54], EPUS+esults [55] and the latter adopts a dynamically changing
PSO [55] and DMS-PSO [30]. The same criteria proposed ireighborhood structure for each particle [30], and botlnefrt

Separable functions includ¢;, fi, fs, fe. Non-separable functions includg,fs,
f7. Note thatfs is grouped as a non-separable function because the prodiugtonent
becomes less significant with the increase of dimension [52]

B. Benchmark comparisons
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TABLE IV
THE STATISTICAL RESULTS(FIRST LINE) AND THE ¢ VALUES (SECOND LINE) OF OPTIMIZATION ERRORS ONLOO-DTEST FUNCTIONS
100-D CSO CCPSO2 MLCC sep-CMA-ES EPUS-PSO DMS-PSO
0.11E-29(1.10E-28) | 7.73E-14 (3.23E-14) | 6.82E-14 (2.32E-14) | 9.02E-15 (5.53E-15) | 7.47E-01 (1.70E-01) | 0.00E+00 (0.00E+00)
h - -1.20E+01 -1.47E+01 -8.16E+00 -2.20E+01 4.14E+00
3.35E+01(5.38E+00) | 6.08E+00 (7.83E+00)| 2.53E+01 (8.73E+00)| 2.31E+01 (1.30E+01)| 1.B6E+01 (2.26E+0) | 3.65E+00 (7.30E-01)
f2 - 1.44E+01 4.00E+00 3.49E+00 1.28E+01 2.75E+01
3.90E+02(5.53E+02) | 4.23E+02 (8.65E+02)| 1.50E+02 (5.72E+01)| 4.31E+00 (1.26E+01)| 4.99E+03 (5.35E+03)| 2.83E+02 (9.40E+02)
fs - -1.61E-01 2.16E+00 3.49E+00 -4.28E+00 4.91E-01
5.60E+01(7.48E+00)| 3.98E-02 (L.O9E-01) | 4.39E-13 (9.21E-14) | 2.78E+02 (3.43E+01)| 4.71E+02 (5.94E+01)| 1.83E+02 (2.16E+01)
fa - 3.74E+01 3.74E+01 -3.16E+01 -3.47E+01 -2.78E+01
0.00E+00(0.00E+00) | 3.45E-03 (4.88E-03) | 3.41E-14 (1.16E-14) | 2.96E-04 (L.48E-03) | 3.72E-01 (5.60E-02) | 0.00E+00 (0.00E+00)
fs - -3.53E+00 -1.47E+01 -1.00E+00 -3.32E+01 0.00E+00
1.20E-014(1.52E-015) 1.44E-13 (3.06E-14) | 1.11E-13 (7.87E-15) | 2.12E+01 (4.02E-01)| 2.06E+0 (4.40E-01) | 0.00E+00 (0.00E+00)
fe - -2.15E+01 -6.18E+01 -2.64E+02 -2.34E+01 3.95E+01
7 28E+05(1.88E+04)| -1.50E+03 (1.04E+01)| -1.54E+03 (2.52E+00)| -1.39E+03 (2.64E+01) -8.55E+02 (1.35E+01)| -1.14E+03 (8.48E+00)
fr - -1.93E+02 -1.93E+02 -1.93E+02 -1.93E+02 -1.93E+02
w/t]l - a/112 4703 a7 6/0/1 21213
TABLE V
THE STATISTICAL RESULTS(FIRST LINE) AND THE ¢ VALUES (SECOND LINE) OF OPTIMIZATION ERRORS ON5S00-DTEST FUNCTIONS
500-D CSO CCPSO2 MLCC sep-CMA-ES EPUS-PSO DMS-PSO
6.57E-23(3.00E-24) | 7.73E-14 (3.23E-14) | 4.30E-13 (3.31E-14) | 2.25E-14 (6.10E-15) | 8.45E+01 (6.40E+00)| 0.00E+00 (0.00E+00)
h - -1.20E+01 -6.50E+01 -1.84E+01 -6.60E+01 8.42E+01
2.60E+01(2.40E+00)| 5.79E+01 (4.21E+01)| 6.67E+01 (5.70E+00)| 2.12E+02 (1.74E+01)| 4.35E+01 (5.51E-01)| 6.89E+01 (2.01E+00)
f2 - -3.78E+00 -3.29E+01 -5.29E+01 -3.55E+01 -6.85E+01
5.74E+02(1.67E+02)| 7.24E+02 (1.54E+02)| 9.25E+02 (1.73E+02)| 2.93E+02 (3.50E+01)| 5.77E+04 (8.04E+03)| 4.67E+07 (5.87E+06)
f3 - -3.30E+00 -7.30E+00 8.23E+00 -3.55E+01 -3.98E+01
3.10E+02(2.16E+01)| 3.98E-02 (1.O9E-01) | 1.79E-11 (6.31E-11) | 2.18E+03 (1.51E+02)| 3.49E+03 (L.12E+02)| 1.61E+03 (1.04E+02)
fa - 7.38E+01 7.38E+01 -6.10E+01 -1.39E+02 -6.08E+01
2.02E-16(0.00E+00) | 1.18E-03 (4.61E-03) | 2.13E-13 (2.48E-14) | 7.88E-04 (2.82E-03) | 1.64E+00 (4.69E-02) | 0.00E+00 (0.00E+00)
fs - -1.28E+00 -4.29E+01 -1.40E+00 -1.75E+02 7.85E+84
4.13E-13(1.10E-14) | 5.34E-13 (8.61E-14) | 5.34E-13 (7.01E-14) | 2.15E+01 (3.10E-01)| 6.64E+00 (4.49E-01)| 2.00E+00 (9.66E-02)
fe - -6.97E+00 -8.53E+00 -3.47E+02 -7.39E+01 -1.04E+02
“1.97E+06(4.08E+04)| -7.23E+03 (4.16E+01)| -7.43E+03 (8.03E+00)| -6.37E+03 (7.59E+01)| -3.51E+03 (2.10E+01)| -4.20E+03 (1.29E+01)
fr - -2 41E+02 2.41E+02 2.41E+02 2.41E+02 2.41E+02
w/t]l - 5171 6/0/1 57171 710/0 5/0/2
TABLE VI
THE STATISTICAL RESULTS(FIRST LINE) AND THE ¢ VALUES (SECOND LINE) OF OPTIMIZATION ERRORS ONLOOO-DTEST FUNCTIONS
1000-D CSO CCPSO2 MLCC Sep-CMA-ES EPUS-PSO DMS-PSO
1.09E-21(4.20E-23) | 5.18E-13 (9.61E-14) | 8.46E-13 (5.01E-14) | 7.81E-15 (1.52E-15) | 5.53E+02 (2.86E+01)| 0.00E+00 (0.00E+00)
h - -2.70E+01 -8.44E+01 2.57E+01 -9.67E+01 1.30E+02
4.15E+01(9.74E-01)| 7.82E+01 (4.25E+01)| 1.09E+02 (4.75E+00)| 3.65E+02 (9.02E+00)| 4.66E+01 (4.00E-01)| 9.15E+01 (7.14E-01)
f2 - -4.32E+00 -6.96E+01 -1.78E+02 -2.42E+01 -2.07E+02
T.01E+03(3.02E+01)| 1.33E+03 (2.63E+02)| 1.80E+03 (1.58E+02)| 9.10E+02 (4.54E+01)| 8.37E+05 (1.52E+05)| 8.98E+09 (4.30E+08)
f3 - -6.04E+00 -2.46E+01 9.17E+00 -2.75E+01 -1.02E+02
6.80E+02(3.10E+01)| 1.99E-01 (4.06E-01) | 1.37E-10 (3.37E-10) | 5.31E+03 (2.48E+02)| 7.58E+03 (L.51E+02)| 3.84E+03 (1.71E+02)
fa - 1.11E+02 1.11E+02 -9.24E+01 -2.24E+02 -9.07E+01
I 2.06E-16(2.18E-17) | 1.18E-03 (3.27E-03) | 4.18E-13 (2.78E-14) | 3.94E-04 (1.97E-03) | 5.89E+00 (3.91E-01)| 0.00E+00 (0.00E+00)
5 - -1.80E+00 -7.51E+01 -1.00E+00 -7.53E+01 5.18E+01
1.21E-12(2.64E-14) | 1.02E-12 (1.68E-13) | 1.06E-12 (7.68E-14) | 2.15E+01 (3.19E-01)| 1.BOE+01 (2.49E+00)| 7.76E+00 (8.92E-02)
fo - 5.59E+00 9.24E+00 -3.37E+02 -3.80E+01 -4.35E+02
3.83E+06(4.82E+04)| -1.43E+04 (8.27E+01)| -1.47E+04 (1.51E+01)| -1.25E+04 (9.36E+01)| -6.62E+03 (3.18E+01)| -7.50E+03 (1.63E+01)
fr - -3.96E+02 -3.96E+02 -3.96E+02 -3.97E+02 -3.97E+02
w/t]l - a7n2 5/0/2 5171 710/0 5/0/2

have participated in the CEC 2008 competition on Large Scdteses inl functions.
Global optimization (LSGO) [43].

The statistical results of the optimization errors showt tha
Based on the previous empirical analysis of the two paraif8SO has significantly better overall performance in compar-
eters in CSO, the parameter settings used in the benchmasks with all the other five compared algorithms on 500-D,
are summarized in Table Ill. The optimization errors on 10@-:000-D functions. CSO and DMS-PSO have similar perfor-
D, 500-D and 1000-D functions are summarized in Tablmance on 100-D functions, and both outperform the rest four
IV, V and VI, respectively. In all the three tables,values algorithms. It seems that DMS-PSO is always able to find
are listed together mean values and the standard deviatidghe global optimum off; and f5, regardless of the number
A negativet value means that the statistical results of thef search dimensions, but has poor performance on the other
optimization errors obtained by CSO are relatively smalledt  five functions in comparison with CSO, especially when the
vice versa. If the difference is statistically significamaler, dimensionality becomes higher. In comparison, MLCC has
the correspondingvalue is highlightedw/¢/1 in the last row yielded the best results ofi;, which is a shifted Rastrigin
means that CSO wins i functions, ties int functions, and function with a large number of local optima. Such outstagdi
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performance orf; should be brought about by the differential
evolution variant (SaNSDE) used in MLCC.
In addition, the convergence profiles of one typical sedarab

TABLE VI

ON 2000-DAND 5000-DFUNCTIONS.
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STATISTICAL RESULTS OF THE OPTIMIZATION ERRORS OBTAINED BYCSO

function (f1) and one typical non-separable functiofy)(are D = 2000 D = 5000
plotted in Fig. 8. It can be seen that, although the convergen }” 1 éff;ggggig;%zg) 91-;‘235;3((%%';%11))
. 2 . . . . -
speed of the pr(_)po_sed is not so fast as the CCPSO2 or MLCC 75 | 2.10E+03(5.14E+01)| 7.30E+03(L.26E+02)
at the very beginning, it is able to perform a relatively more fa | 2.81E+03(3.69E+01) 7.80E+03(8.73E+01)
consistent convergence to continuously improve the soiuti f5 | 3.33E-16(0.00E+00)| 4.44E-16(0.00E+00)
quality. Jo | 3.26E-12(5.43E-14)| 6.86E-12(5.51E-14)

Since the time cost of one single run on a 5000-D functionsxieemely
expensive, the statistical results of optimization errams averaged over 10

C. Scalability to higher dimensionality independent runs.

From the statistical results of the optimization errors sum

marized in Table IV, V and VI, it can be noticed that CSO hage seen that CSO has shown the best scalabilit;cand fs,

shown very good scalability to the search dimension, it®, tyhere the mean optimization errors obtained by CSO on the
performance does not deteriorate seriously as the dimensi@00-p and 5000-D test problems are much better than those
Increases. obtained by the compared algorithms. Meanwhile, CSO shows

To further examine the search ability of CSO on thgimilar scalability to CCPSO2 and MLCC ofy and f.
functions of even higher dimensions, e.g., 2000-D or even

5000-D, additional experiments have been performedfon

to fs of 2000 and 5000 dimensiong; is excluded from this D- Influence of neighborhood control

experiment for the reason that its global optimum is dimemsi  |n CSO, as introduced in Section Il, there exist two versions
dependent and thus it is not easy to evaluate the scalabilityor calculating the mean positioﬁk(t) in the learning strat-

It must be stressed that optimization of problems of 20Q&y, one global Versioﬂ?g(ﬁ) and one local Versio[fllyk(t),
and 5000 dimensions is very challenging for CSO since fhere the calculation ok, () is based on a neighborhood
has not adopted any particular strategies tailored forisglv jnstead of the whole swarm, refer to (6). Although the effec-
large scale optimization, e.g., tlévide-and-conquestrategy. tiveness ofX/(t) has already been verified by the empirical
Furthermore, to the best of our knowledge, optimization @&sults above, it is still very interesting to investigate t
problems of a dimension larger than 1000 has only begifluence of neighborhood control used i/, (t) on the
reported by Li and Yao in [52], where 2000-dimensioffial  swarm diversity and thus the search performance.
f3 and f; have been employed to test their proposed CCPSO2jith neighborhood control, the whole swarm is dynamically
divided into several neighborhoods, each neighborhoothbav
a local mean position vector. This will enhance the swarm
diversity in comparison with the original CSO where the

TABLE VII
PARAMETER SETTINGS OFCSOON 2000-DAND 5000-DFUNCTIONS.

Parameter| Dimension | Separable] Non-separable whole swarm shares a global mean position. Intuitively, a
m 2000-D 1000 1000 higher degree of swarm diversity may help alleviate preneatu
2888:8 105 go %)5%) convergence but can also slow down the convergence speed to
v 5000-D 0.2 0.15 a certain extent.

Separable functions includg, fi, fs and fg. Non-separable functions For simplicity, the commonly useiing topology[22], [23],
include f2 and f3. Note thatf5 is grouped as a non-separable functior[59], which has been shown to be an effective neighborhood
gf‘fﬁg%ﬁégﬁs%ﬁgg}Compone”t becomes less significantthatincrease gy oyre [60] is adopted here. In this topology, each parti
takes the two immediate neighbors to form a neighborhood
The parameter settings are listed in Table VII and tH61].
statistical results of optimization errors are listed iff&aVilI. First, we investigate the influence of the neighborhood
It can be seen that CSO continues to perform well evendentrol on the swarm diversity. In order to obtain measwgabl
the dimension is higher than 1000, especially on the threbservations, aliversity measuréntroduced in [62], [63] is
separable functiong;, f4 and fs, together withfs. adopted here to indicate the change of diversity during the
In order to get an overall picture of the scalability ofearch process:
CSO and the five compared algorithms, the mean optimization
errors obtained by the six algorithms on all test functiofis o
dimensions 100, 500 and 1000 are plotted in Fig 9, together
with the mean optimization errors obtained by CCPSO2 and

i 27
sep-CMA-ES on 2000-0F; and f5 [52], as well as the mean with (27)
optimization errors obtained by CSO on 2000-D and 5000-D i 1 & j
f1 to fs. Unfortunately, we are not able to obtain the results of = Z(% ),

the compared algorithms on all 2000-D and 5000-D functions =t

due to the prohibitively high time-consumption needed fowhere D(P) denotes the diversity of the swarf, m is the
optimization of such large scale problems. Nevertheléssri swarm size,n is the dimension of the decision spac€, is
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Fig. 9. The statistical results of optimization errors aied by CSO, CCPSO2, MLCC , sep-CMA-ES, EPUS-PSO and DMS-&8000-D, 500-D, 1000-D
f1 to fs , together with the statistical results of optimizationoesr obtained by CCPSO2, sep-CMA-ES on 2000fD f3 and the statistical results of
optimization errors obtained by CSO on 2000-D, 5000-Dto fs. Note that due to the logarithmic scale used in the plot@rerof 0 cannot be shown.

the value of thej-th dimension of particle, and z7 is the
average value of thg-th dimension over all particles.
It can be seen from Fig. 10 that the overall swarm diversity

of CSO with neighborhood control (denoted as CSO-n) i
higher than that of the original CSO, which is in consistency

with the expectation above.

To further assess whether the enhanced swarm diversity can
have a positive influence on the search performance of CSO-
additional numerical experiments have been conducted 6n 50

TABLE X
STATISTICAL RESULTS OF OPTIMIZATION ERRORS OBTAINED BYCSON
AND CSOON 1000-DFUNCTIONS.

m = 500 CSO-n CSO t value
f1 7.77E-001(2.30E-002) | 1.09E-21(4.20E-23) | 1.69E+02
f2 8.11E+001(6.48E-001)| 4.15E+01(9.74E-01) | 1.69E+02
f3 1.31E+007(7.74E+005)| 1.01E+03(3.02E+01) | 8.46E+01
fa 1.02E+004(5.51E+001){ 6.89E+02(3.10E+01) | 7.52E+02
fs 4.22E-002(1.77E-003) | 2.26E-16(2.18E-17) | 1.19E+02

N, fe 5.95E-002(6.32E-003) | 1.21E-12(2.64E-14) | 4.71E+01
f7 -2.58E+006(3.06E+004) -3.83E+06(4.82E+04)| 1.09E+02

D and 1000-D functions. Two-tailetitest is implemented at
a significance levede = 0.05 between the statistical results of
optimization errors obtained by CSO-n and CSO. A negati@s in the original CSO have been used for CSO-n, refer
t value means that the statistical results obtained by CSOm Table Ill. The experimental results shown in Table IX

are relatively smaller and vice versa. The smaller stagibti and Table X indicate that CSO-n is outperformed by the
original CSO. As discussed above, the neighborhood control

results are highlighted.

TABLE IX
STATISTICAL RESULTS OF OPTIMIZATION ERRORS OBTAINED BYCSON
AND CSOON 500-DFUNCTIONS.

m = 250 CSO-n CSO t value
f1 2.71E-011(5.77E-012) 6.57E-23(3.90E-24) 2.35E+01
T2 4 61E+001(1.02E+000)| 2.60E+01(2.40E+00)| 3.85E+01
T 5.37E+002(4.00E+001)| 5.74E+02(1.67/E+02 | -1.08E+00
fa 3.95E+003(1.32E+002)| 3.19E+02(2.16E+01) | 1.36E+02
T 4.04E-012(7.00E-013) | 2.22E-16(0.00E+00) | 2.89E+01
fo 4.90E-007(5.98E-008) | 4.13E-13(1.10E-14) | 4.10E+01
Tz -1.68E+006(8.17E+003)| -1.97E+06(4.08E+04)| 3.48E+01

is expected to generate a higher degree of swarm diverdity an
the experimental results in Fig. 10 has empirically confoime
this expectation. Therefore, one possible reason for tfleeiar
performance of CSO using neighborhood control is that for
these test functions, the diversity of the global CSO isaalye
sufficient and therefore additional diversity may slow down
the convergence.
In the global version of CSO, the main source of swarm
diversity comes from the random pairwise competitions,n@he
the swarm size can be an important factor to determine the
amount of diversity. More specifically, a bigger swarm sige i
In the first set of experiments, the same parameter settirajde to provide more combinations of random pairwise compe-
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hood control, if a relatively large swarm size is used fogéar
scale optimization problems. However, use of neighborhood
control, which is able to further enhance diversity, canbdma

us to use a smaller swarm size even for large scale problems,
which is very attractive in practice.

V. CONCLUSION

In this paper, we have introduced a new swarm algorithm
termed competitive swarm optimizer (CSO). The algorithm
is based on a pairwise competition mechanism and adopts a

Fig. 10. The swarm diversity profiles during 500,000 Fitn&sluations
(FEs) of CSO with neighborhood control (denoted as CSO-d)the original
CSO on 500-D functions on a separable functifnand a non-separable
function f3 respectively.

novel update strategy, where neithgest nor pbest is used.
Theoretical proof of convergence and empirical analysis of
search dynamics are given to understand the search mecha-
nisms of CSO. Despite its simplicity in algorithmic impleme

. . . ) . tation, CSO has shown to perform surprisingly well on large
“F'O”S’ thus genera_tlng a h|gher degree of swarm diverity scale optimization problems, outperforming many statéhef

vice versa. Followmg this line of thoughts, the performpcart meta-heuristics tailored for large scale optimizatiGur

of CSO-n may be improved by reducing the swarm SIZEomparative studies conducted on 100-D, 500-D and 1000-D

Th.erefore., a second set of experiments have been c_ond.u% '08 benchmark problems demonstrate that CSO performs
using a different parameter setup, where the swarm sizd is 88ns

original CSO, which maintains less swarm diversity, is dble

to m = 150 for 500-D functions andn = 200 for 1000-D dime

functions, respectively.

TABLE XI
STATISTICAL RESULTS OF OPTIMIZATION ERRORS OBTAINED BYCSON
AND CSOON 500-DFUNCTIONS.

istently well on those test functions, especially mhigh
nsional cases. The performance of CSO has been further
demonstrated on 2000-D and 5000-D functions and the exper-
imental results show that CSO has reasonably good sc#&abili
on these extremely high-dimensional problems. In additian

have empirically investigated the influence of neighborhoo
control on the swarm diversity and search performance of

m = 150 CSO-n CSO t value . .
A TEIE-025(3 21E027) | 4.10E-023(0.28E-025) | -2.20E+02 C_SO, .WhICh suggests that neighborhood control can enhar)ce
f2 5.23E+001(1.11E+001)| 8.20E+001(4.53E+000)| -1.24E+01 diversity and therefore enable us to user a smaller swaren siz
f3 7.93E+002(1.03E+002)| 9.32E+002(4.15E+002)| -1.63E+00 for large scale optimization problems
fa 4.18E+002(3.04E+001)| 6.45E+002(2.66E+001)| -2.81E+01 g p art p - : o
fs 3.11E-016(4.44E-017) | 2.46E-003(4.93E-003) | -2.49E+00 In the future, we will investigate the application of CSO
fo 4.00E-014(1.74E-015) | 1.08E+000(1.41E-001)| -3.83E+01 ; ; i At
fr ~1.79E+006(1.28E+004) -2.10E+006(5.73E+003)| 1.11E+02 to 39IVqu qther challenging optimization prpblgms, sush a
multi-objective problems [64] and many-objective probgem
[65]. Application of CSO to complex real-world problems is
TABLE XII another important future work.
STATISTICAL RESULTS OF OPTIMIZATION ERRORS OBTAINED BYCSON
AND CSOON 1000-DFUNCTIONS. ACKNOWLEDGEMENT
m = 200 CSO-n CSO p value ) ) )
f 3.60E-018(0.38E-010) | 5.22E-013(3.70E-013) | -7.05E+00 This work was supported in part by Honda Research Insti-
fa 6.50E-+001(1.10E+000)| 1.03E+002(3.24E+000)| -5.55E+01 tute Europe.
I3 1.61E+003(7.96E+001)| 1.95E+003(2.08E+002)| -7.63E+00
fa 1.04E+003(4.85E+001)| 2.14E+003(7.51E+001)| -6.15E+01
Ia 7.77E-016(0.00E+000) | 2.46E-003(4.93E-003) | -2.49E+00
7o 1.37E-010(1.84E-011) | 3.03E+000(2.67E-001)| -5.67E+01 REFERENCES
fr ~2.90E+006(1.690E+004)] -4.24E+006(3.056E+004)| 1.02E+02

As shown by the statistical results of optimization erroréz]
in Table XI and Table XIlI, after reducing the swarm size,
CSO-n is able to outperform the global CSO on most tedf!
functions studied in this work, except fg¢. Interestingly, the
performance of CSO orf; is always better than CSO-n. As [4]
described in [43]f7 is a very special function which has large
amount of random noise and its global optimum is unknowns
One possible reason for such a consequence isfthas a

noisy function, is very sensitive to the swarm diversityd &ime

achieve better performance on it.

To summarize, since the random pairwise competitions are
able to generate sufficient amount of diversity in the swarm,
the original CSO can work properly without using neighbor-
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