Published in: Proceedings of 2004 Congress on Evolutionary Computation. pp.1-8, Portland,

June 19-23, 2004

eural Network Regularization and Ensembling
Using Multi-objective Evolutionary Algorithms

Yaochu Jin
Honda Research Institute Europe
Carl-Legien-Str.30
63073 Offenbach, GERMANY
Email: yaochu.jin@honda-ri.de

Abstract— Regularization is an essential technique to improve
generalization of neural networks. Traditionally, regularization is
conduced by including an additional term in the cost function of a
learning algorithm. One main drawback of these regularization
techniques is that a hyperparameter that determines to which
extension the regularization influences the learning algorithm
must be determined beforehand.

This paper addresses the neural network regularization prob-
lem from a multi-objective optimization point of view. During
the optimization, both structure and parameters of the neural
network will be optimized. A slightly modified version of two
multi-objective optimization algorithms, the dynamic weighted
aggregation (DWA) method and the elitist non-dominated sort-
ing genetic algorithm (NSGA-II) are used and compared. An
evolutionary multi-objective approach to neural network regular-
ization has a number of advantages compared to the traditional
methods. First, a number of models with a spectrum of model
complexity can be obtained in one optimization run instead of
only one single solution. Second, an efficient new regularization
term can be introduced, which is not applicable to gradient-based
learning algorithms.

As a natural by-product of the multi-objective optimization
approach to neural network regularization, neural network
ensembles can be easily constructed using the obtained networks
with different levels of model complexity. Thus, the model
complexity of the ensemble can be adjusted by adjusting the
weight of each member network in the ensemble. Simulations
are carried out on a test function to illustrate the feasibility of
the proposed ideas.

I. INTRODUCTION

One of the most essential issues in neural network training
is to improve generalization of the neural network models.
In other words, neural network models should not only have
a high approximation accuracy on the data samples used
in the training, but also show good performance on unseen
data. A class of commonly used techniques for improving
generalization of neural networks is known as regularization,
which aims to prevent the learning algorithm from over-fitting
the training data. Several regularization techniques have been
suggested in the literature, such as early stopping, weight
decay and curvature-driven smoothing [1].

A popular approach to regularization is to include an addi-
tional term in the cost function of learning algorithms, which
penalizes overly high model complexity. A hyperparameter,
known as the regularization parameter determines to what
extent the regularization will influence the learning algorithm.

Tatsuya Okabe

Honda Research Institute Europe
Carl-Legien-Str.30

63073 Offenbach, GERMANY

Bernhard Sendhoff
Honda Research Institute Europe
Carl-Legien-Str.30
63073 Offenbach, GERMANY

That is to say, this parameter will determine the model com-
plexity of the trained neural network. The larger the parameter
is, the higher the penalty will be on the model complexity.
However, it is usually not trivial to determine a suitable model
complexity that is optimal for the problem at hand. Very often,
this has been done by minimizing an estimated generalization
error [2]. To estimate the generalization error, it is usually
necessary to split the available data into a training data set
and a validation data set. Unfortunately, selecting models
by minimizing an estimate of the generalization error is not
always consistent, as it has been mentioned in [3].

From the multi-objective optimization point of view, includ-
ing a regularization term in the cost function is equivalent
to combining two objectives using a weighted aggregation
formulation. Thus, it is straightforward to re-formulate the
regularization techniques as multi-objective optimization prob-
lems. Such ideas have first been reported in [4]. In that paper,
a variance of the e-constraint algorithm was adopted to obtain
one single Pareto-optimal solution that simultaneously mini-
mizes the training error and the norm of the weights. Similar
work has also been reported in [5], where a multi-objective
evolutionary algorithm is used to minimize the approximation
error and the number of hidden nodes of the neural network.
Again, only the one with the minimal approximation error has
been selected for final use.

This paper presents a method for regularizing neural net-
works using multi-objective evolutionary algorithms. Thus, no
hyperparameter needs to be specified beforehand. A number
of Pareto-optimal neural networks, instead of one single net-
work will be generated in the evolutionary optimization. Two
existing multi-objective algorithms, the dynamic weighted ag-
gregation (DWA) method [6], [7] and the elitist non-dominated
sorting genetic algorithms (NSGA-II) [8] are slightly modified
to adapt them to the structure and parameter optimization of
neural networks. Life-time learning of the parameters, i.e., the
weights of the neural network is carried out using a fast and
robust learning algorithm known as the RProp* algorithm [9].
The weights trained by the RProp* algorithm are inherited by
the individuals, which is often known as Lamarkian evolution
[10]. Since evolutionary algorithms are used in optimization,
a more direct model complexity measure, the number of
connections in the network can be used as the regularization

jin
Published in: Proceedings of 2004 Congress on Evolutionary Computation. pp.1-8, Portland,
June 19-23, 2004

term.

The performance of the DWA-based and the NSGA-I1 based
multi-objective optimization algorithms are compared on the
Ackley function [11]. It is shown that the non-dominated
solutions in the final generation are often dominated by other
solutions obtained in the history of optimization, although
NSGA-II is basically an elitist algorithm. This becomes more
serious when the population size is small. This indicates that
the population may not be able to maintain the found non-
dominated solutions. On the other hand, it is shown DWA
works quite well for neural network structure and parameter
optimization, although it has been often used for continuous
parameter optimization problems. However, the accuracy of
the DWA is worse than that of the NSGA-II if a large
population size is used.

Neural network ensembles can be constructed straightfor-
wardly using the non-dominated solutions generated in the
multi-objective optimization. Since they are quite diversified in
structure, these networks are natural candidates for construct-
ing network ensembles. Illustrative examples on constructing
neural network ensembles from the obtained non-dominated
neural networks are also provided.

Il. NEURAL NETWORK REGULARIZATION

The most common error function in training or evolving
neural networks is the mean squared error (MSE):

1 = d(; \\2
E= Z;(y (1) = y(i))?, (1)

where N is the number of training samples, y¢(4) is the desired
output of the 4-th sample, and y(%) is the network output for the
i-th sample. In this work, we consider multi-layer perceptron
(MLP) neural networks with one output. Refer to [1] for other
error functions, such as the Minkowski error or cross-entropy.

It has been found that neural networks can often over-
fit the training data, which means that the network has a
very good approximation accuracy on the training data, but
a very poor one on unseen data. To improve generalization of
neural networks, regularization techniques are often adopted
by including an additional term in the error function:

J=E+\Q, @)

where X is a hyperparameter that controls the strength of
the regularization and Q is known as the regularizer. A most
popular regularization method is known as weight decay:

1 2
9=5§kjwk, 3)

where k is an index summing up all weights.

One weakness of the weight decay method is that it is not
able to drive small irrelevant weights to zero, which may result
in many small weights [12]. The following regularization term
has been proposed to address this problem [12]:

Q=Z|w,-|. @)

000000
1 5
000000 -
110001 2
110001
4
001100
Fig. 1. A connection matrix and the corresponding network structure.

This regularization was used for structure learning, because it
is able to drive irrelevant weights to zero.

Both regularization terms in equations (3) and (4) have
also been studied from the Bayesian learning point of view,
which are known as the Gaussian regularizer and the Laplace
regularizer, respectively.

I1l. EVOLUTIONARY LEARNING AND REGULARIZATION
A. Parameter and Structure Representation of the Network

A connection matrix and a weight matrix are employed
to describe the structure and the weights of the MLP neu-
ral networks. Obviously, the connection matrix specifies the
structure of the network whereas the weight matrix determines
the strength of each connection. Assume that a neural network
consists of M neurons in total, including the input and output
neurons, then the size of the connection matrix is M x (M +1),
where an element in the last column indicates whether a
neuron is connected to a bias value. In the matrix, if element
cij,t =1,...,M,j =1,..., M equals 1, it means that there
is a connection between the i-th and j-th neuron and the
signal flows from neuron j to neuron ¢. If j = M + 1, it
indicates that there is a bias in the i-th neuron. Obviously, for
a purely feedforward network, the upper part of the matrix,
except the (M + 1)-th column is always zero. Fig. 1 illustrates
a connection matrix and the corresponding network structure.
It can be seen from the figure that the network has one input
neuron, two hidden neurons, and one output neuron. Besides,
both hidden neurons have a bias.

The strength (weight) of the connections is defined in the
weight matrix. Accordingly, if the ¢;; in the connection matrix
equals zero, the corresponding element in the weight matrix
must be zero too.

B. Multi-objective Optimization Formulation of Regulariza-
tion
It is quite straightforward to see that the neural network

regularization in equation (2) can be reformulated as a bi-
objective optimization problem:

min {fl;fQ} (5)
h = E, (6)
f2 = 9, (7

where E is defined in equation (1), and Q is one of the
regularization terms defined in equation (3) or (4).

Since evolutionary algorithms are used to implement reg-
ularized learning of neural networks, a new and more direct
index for measuring complexity of neural networks can be
employed, which is the number of connections in the neural

network:
Q= E E Cij, (8)
i g

where ¢;; equals 1 if there is connection from neuron j to
neuron ¢, and 0 if not. Obviously, the smaller the number of
connections in a network is, the less complex the network.
Note that this regularizer is well suitable for evolutionary
optimization although it is not applicable to gradient-based
learning algorithms due to its discrete nature. We term this
evolutionary regularizer for convenience.

C. Mutation and Life-time Learning

A genetic algorithm with a hybrid of binary and real-valued
coding has been used for optimizing the structure and weights
of the neural networks. The genetic operators used are quite
specific. Four mutation operators are implemented on the chro-
mosome encoding the connection matrix, namely, insertion of
a hidden neuron, deletion of a hidden neuron, insertion of a
connection and deletion of a connection [10]. A Gaussian-
type mutation is applied to the chromosome encoding the
weight matrix. One of the five mutation operators is randomly
selected and performed on each individual. No crossover has
been employed in this algorithm.

After mutation, an improved version of the Rprop algorithm
[9] has been employed to train the weights. This can be seen
as a kind of life-time learning within a generation. After
learning, the fitness of each individual with regard to the
approximation error (f;) is updated. In addition, the weights
modified during the life-time learning are also encoded back
to the chromosome, which is known as the Lamarkian type of
inheritance.

In the life-time learning, only the first objective, i.e., the
approximation error will be minimized. The Rprop learning
algorithm is employed in this work because it is believed that
the Rprop learning algorithm is faster and more robust than
other gradient-based learning algorithms.

Let w;; denotes the weight connecting neuron j and neuron
i, then the change of the weight (Aw;;) in each iteration is as

follows: SE®
Aw() = —sign (6—> N 9)

ij 7
Wi j g

where sign(-) is the sign function, Ag) > 0 is the step-size,

which is initialized to Aq for all weights. The step-size for
each weight is adjusted as follows:

et Al if 22470 0BG o
LY ’ wij wij
(5 _ — (t—1) e gEC-1) gp®)
AZ.]. =9 & A , 'faTij‘ o <0 , (10)
Al otherwise

where 0 < £~ < 1 < &1, To prevent the step-sizes from
becoming too large or too small, they are bounded by A i <
A < Amax.

One exception must be considered. After the weights are
updated, it is necessary to check if the partial derivative
changes sign, which indicates that the previous step might be
too large and thus a minimum has been missed. In this case,
the previous weight change should be retracted:

SE®)

OBt
8wij 6wl~j

Aw® = ALY if

<0. (11

Recall that if the weight change is retracted in the ¢-th iteration,
the E® /dw;; should be set to 0.

In reference [9], it is argued that the condition for weight
retraction in equation (11) is not always reasonable. The
weight change should be retracted only if the partial derivative
changes sign and if the approximation error increases. Thus,
the weight retraction condition in equation (11) is modified as
follows:

OE(®-1) gE®)
6w,~j ’

<0and E® > Et-1).
(12)
It has been shown on several benchmark problems in [9]

that the modified Rprop (termed as Rpropt in [9]) exhibits
consistent better performance than the Rprop algorithm.

t) _ (t—1)
Aw® = A7V if B

D. Fitness assignment and selection: DWA versus NSGA-I |

The two multi-objective optimization algorithms are the
same except that different strategies in fitness assignment and
selection have been adopted. In the first algorithm, the two
objectives are aggregated into one single fitness function, as
suggested in [6]:

F=nE+(1-n. (13)
As the evolution proceeds, the weight 7 is gradually changed
from 1 to 0. In this way, a number of Pareto-optimal solutions
can be obtained. Since the DWA method reduces a multi-
objective optimization problem to a dynamic single objective
optimization problem, the tournament selection method used
in [9] can directly be adopted.

In the second algorithm, the fitness assignment and selection
proposed in NSGA-II [8] is employed. At first, the off-
spring and the parent populations are combined. Then, a non-
domination rank (r;) and a local crowding distance (d;) are
assigned to each individual in the combined population. After
that, the crowded tournament selection is implemented. In the
crowded tournament selection, two individuals are randomly
picked out from the combined population. If individual A
has a higher (better) rank than individual B, individual A is
selected. If they have the same rank, the one with a better
crowding distance (the one locating in a less crowded area) is
selected. Compared to fitness sharing techniques, the crowded
tournament selection guarantees that always the individual
with a better rank is selected. The crowding distance can be
calculated either in the parameter or objective space. In this
work, the distance is computed in the objective space.

mogm %’ ° O§OO

Number of connections (x 10‘1)

o
8
8
8
°
®
o
8
8

1 15 2 25
MSE on training data

Fig. 2. All solutions found using the DWA method. Population size is 100.

IV. ILLUSTRATIVE EXAMPLES ON REGULARIZATION

To illustrate the feasibility to carry out neural network
regularization using multi-objective optimization, simulation
studies have been carried out on a three-dimensional Ackley
function. 100 data samples have been generated, of which
80 samples are used for training and the remaining 20 data
samples for test. The population size of the algorithms used
for evolving neural networks is 100 and the optimization is
run for 200 generations, wherever not explicitly explained. In
mutating the weights, the standard deviation of the Gaussian
noise is set to 0.05. The weights of the network are initialized
randomly in the interval of [—0.2,0.2] and the maximal num-
ber of hidden neurons is set to 10. In the Rprop* algorithm,
the step-sizes are initialized to 0.0125 and bounded between
[0,50] in the adaptation, and £~ = 0.2, £& = 1.2. Note
that a number of parameters needs to be specified in the
Rprop* algorithm, however, the performance of the algorithm
is not very sensitive to these values [9]. In our work, we use
the default values recommended in [9] and 50 iterations are
implemented in each life-time learning.

A. Comparison of DWA and NSGA-II

We first compare the performance of the algorithms based
on DWA and NSGA-II, respectively, using the evolutionary
regularizer. The results are shown in Fig. 2 and Fig. 3. Note
that an archive is needed in DWA to store the non-dominated
solutions.

It can be found that the DWA works quite well although it
is not a purely parameter optimization problem. It can be seen
from Fig. 2 that the DWA itself is able to approximate the
Pareto front properly, and the performance of the final non-
dominated solutions largely depends on the archiving method.
It can also be found that although the population size is
100, the number of Pareto-optimal solutions maintained in the
population of the final generation of the NSGA-II algorithm
is relatively small. To see if the NSGA-II is able to maintain
the found non-dominated solutions, we also show all solutions
found by the NSGA-II algorithm in Fig. 3. It can be seen
that the solutions contained in the population of the final
generation are not really non-dominated, if we look at all

000 QOO 0000 0D OO 0O

Number of connections (x 10‘1)

1 15 2 25
MSE on training data

0 0.5

Fig. 3. All solutions found using the NSGA-II method. The solutions
maintained in the population of the final generation are denoted using circles.
Population size is 100.

Number of connections (x 10‘1)

1 15 2 25
MSE on training data

0 0.5

Fig. 4. All solutions found using the DWA method when the population size
is 15.

solutions found during the search. This indicates that archiving
of the found non-dominated solutions might be necessary,
despite that an elitist selection strategy has been used in the
NSGA-II algorithm.

Next, let us compare the two algorithms when a smaller
population size is used. Figure 4 shows all solutions obtained
from the DWA. It is obvious that the quality of the solutions
degrades, when the population size decreases. Similarly, the
performance of the NSGA-II also degrades, particularly in
terms of the non-dominated solutions maintained in the pop-
ulation of the final generation, refer to Fig. 5.

B. Training against Validation Error

The necessity of regularization is based on the assumption
that the learning algorithm could over-fit the training data,
which leads to bad performance on validation data. This could
be avoided by controlling the model complexity of the network
during learning. To verify this assumption empirically, the
relationship between model complexity and validation error
is shown in Figures 6, 7 and 8, whereas the evolutionary, the
Gaussian and the Laplace regularizers are used, respectively.

From these figures, we see that over-fitting does occur when
the neural network is overly complex. This trend is relatively
clear when the evolutionary and the Laplace regularizers are

Number of connections (x 10‘1)

1 1:5 é 2:5
MSE on training data
Fig. 5. All solutions found in the search using the NSGA-1I method. The

solutions maintained in the population of the final generation are denoted
using stars. Population size is 15.

MSE on Validation Data
N
N
o

0.4 L L L L L
0 10 20 30 40 50 60
Number of Connections

Fig. 6. Number of connections versus validation error.

used. In the Gaussian regularizer case, it seems that the higher
the complexity is, the smaller the approximation error on the
validation data. However, we also notice that a model with a
medium complexity turns out to be the best on the validation
data.

A general conclusion from these results is that the relation-
ship between model complexity and generalization is not as
simple as we might imagine. This is why an optimal early
stopping is often difficult.

C. Gaussian or Laplace Regularizer

When gradient-based learning algorithms are employed for
regularization, the Laplace regularizer is usually believed to
be better than a Gaussian regularizer in that the Laplace
regularizer is able to drive irrelevant weights to zero. In this
way, “structural learning” is realized with the help of the
Laplace regularizer [12]. In this subsection, we show that there
is no big difference between the Gaussian and the Laplace
regularizers in terms of their ability to realize structural learn-
ing, when evolutionary algorithms are used as an optimizer.
From Figures 9 and 10, we can see that they show similar
relationship between the sum of squared or absolute weights
and the number of connections. In other words, even when
the Gaussian regularizer is used, the number of connections
can also be reduced to the minimum when the sum of squared

N

eoop
(2] [e2]
an

=
»
o

00

[N
oo

MSE on Validation Data
-
N

o
©
o

g
o
o

50 100 150 200 250 300
Sum of Squared Weights

Fig. 7. Sum of squared weights versus validation error.

MSE on Validation Data
o - = = =
) = N N o ©
o
°
o
o
s
@

g

o

o
o

0.4
0 20 40 60 80 100 120

Sum of Absolute Weights

Fig. 8. Sum of absolute weights versus validation error.

weights is minimized. It does not result in many small weights
as when gradient-based learning algorithms are used.

V. CONSTRUCTING ENSEMBLES FROM REGULARIZED
NETWORKS

Traditionally, individual neural networks for an ensemble
can be trained either independently, sequentially and simulta-
neously [13]. In the first case, neural networks are generated
separately and no interaction between the networks will be
taken into account during training. In the second case, neural
networks are generated sequentially. However, the correlation
between the current network and the existing ones will be
considered too to encourage diversity. In the third case, neural
networks are trained simultaneously, not only minimizing the
approximation error, but also encouraging diversity among
individual networks.

It is well recognized that diversity plays an important role in
constructing neural network ensembles [1]. Basically, diversity
of ensemble members can be achieved or enhanced by using
various initial random weights, varying the network archi-
tecture, employing different training algorithms or supplying
different training data[14]. In some cases, it is also possible
to increase network diversity by generating training data from
different sources. For example, the geometry of an object
can be represented by parametric or non-parametric methods.
Thus, different sources of training data can be obtained for
describing certain performance of the same object.

Gaussian regularizer

60
50 & RN
*
*
2 * *
S 40}
[53
< *
5 *
230 *
o
g *
E 20} *
= *
*
10f % %
¥ * %
0
0 50 100 150 200 250 300

Sum of squared weights

Fig. 9. Relationship between the number of connections and the sum of
squared weights.

Laplace regularizer

60

50 o « *]

. ox
2] *
S
B 40f *
(7]
c
c *
o
o **
‘5 30f M
z
-
5 20t &
z *
F]
¥
10F *
-
N
0
0 20 40 60 80 100 120

Sum of absolute weights

Fig. 10. Relationship between the number of connections and the sum of
absolute weights.

In contrast to the above-mentioned methods where diversity
is achieved implicitly, methods for explicitly encouraging
diversity among ensemble members have been widely studied
in the recent years. Measures for increasing diversity include
a diversity index [15], degree of decorrelation [16], or degree
of negative correlation [17], [18] between the output of the
candidate networks.

In the multi-objective approach to neural network regular-
ization, a number of neural networks can be obtained. Since
the structure of the neural network varies from one to another,
they can be very good candidates for constructing neural
network ensembles. The question is, which networks should
be used and how they should be combined.

A straightforward idea is to use all non-dominated solutions
obtained by the multi-objective optimizer. Alternatively, a
subset of the non-dominated solutions that is well distributed
could be used as representatives.

To select a subset from a given number of networks can
also be regarded as to find out the optimal weight for each
candidate network based a certain criterion. Given N neural
networks, the final output of the ensemble can be obtained by

averaging the weighted outputs of the ensemble members:

N
y"V =3 a®y®, (14)
k=1

where y*) and a(*) are the output and its weight of the
k-th neural network in the ensemble. Usually, all weights
are equally set to 1/N, and the overall output is known
as simple average. If the weights are optimized based on a
certain criterion, the overall output is then called weighted
average. Given a set of validation data, the expected error of
the weighted output of the ensemble can be calculated by:

N N
EPN =35 aal)cy,

=1 j=1

(15)

where C;; is the error correlation matrix between network
and network j in the ensemble:

Ci; = E(y: — Zlg)(yj - yjd')];

where E[-] denotes the mathematical expectation.
It has been shown [19] that there exists an optimal set of
weights that minimizes the expected prediction error of the

ensemble; N
(k) Zj:l (ij)71
0= SN N 1’
Ei:l 21:1 (Cij)

where 1 <14,5,k < N.

However, a reliable estimation of the error correlation
matrix is not straightforward because the prediction errors
of different networks in an ensemble are often strongly cor-
related. Alternatively, the recursive least-square method can
be employed to search for the optimal weights [20], where a
genetic algorithm is also used to select a subset of the solutions
for constructing ensembles by minimizing the training error.
Other methods have also been proposed to minimize the
validation error using a genetic algorithm [21].

In this investigation, a canonical evolution strategy is em-
ployed to find the optimal weights to minimize the expected
error in equation 15.

(16)

(17)

VI. ILLUSTRATIVE EXAMPLES ON ENSEMBLE

CONSTRUCTION

A standard (15,100)-ES has been used to optimize the
ensemble weights in equation (14) based on the expected error
on the validation data. A standard evolution strategy can be
briefly described as follows:

o; (t)
x(t) =

oi(t — 1)exp(r'z)exp(rz;)
x(t—1)+2Z

(18)
(19)

where x is an n-dimensional parameter vector to be opti-
mized, z is an n-dimensional random number vector with
zZ ~ N(0,0(t)?), z and 2; are normally distributed random

numbers with z, z; ~ N(0,1). Parameters 7, 7' and o; are the

strategy parameters, where ¢; is mutated as in equation (18)
and 7, 7' are constants as follows:

T:(2\/ﬁ>_1; T = (\/2_)_1

The initial step-sizes of the evolution strategy are set to
0.00001 and the weights are initialized randomly between
0.005 and 0.01. The weight optimization has been run for
200 generations. The non-dominated solutions that are used
in the simulations in this section are those obtained using the
NSGA-II algorithm as shown in Fig. 3.

(20)

A. Use All Found Non-dominated Solutions

The most straightforward approach is to use all obtained
non-dominated solutions to construct an ensemble. In the final
generation of the optimization, 40 solutions have been found
to be non-dominated, as shown in Fig. 3.

Fig. 11 (a) shows the average prediction of 10 validation
samples from the 40 networks with the standard deviation,
whereas the results using weighted average are given in Fig. 11
(b). These 10 samples have not been used during the training,
however, they are used to estimate the expected prediction
error for optimizing the weights of the ensemble members
in equation (14). The optimization process (change of the
expected prediction error) is shown in Fig. 12. Obviously,
the prediction performance of the ensemble has been im-
proved significantly on the validation data using the optimized
weights.

104

9 x 9

: Pt . N

4 o 133 @

6 @ % 6 i) i)

5 x 5

4 4|

3 3|

2 2

1 1]

00 2 4 6 8 10 0 2 4 6 8 10
Sample points Sample points

(@) (b)

Fig. 11. Prediction of the validation data using (a) simple average and (b)

weighted average.

However, the weights optimized by minimizing the expected
prediction error on the validation data are not necessarily
optimal for test data. This can be seen from the results shown
in Fig. 13.

The MSE of the best and worst single networks from the 40
solutions, the MSE of the simple average ensemble, and the
MSE with the weights being optimized by minimizing the cost
function defined in equation (15) are given in Table I. Notice
that in calculating the MSE of the ensemble on the test data,
the weights are those optimized on the basis of the validation
data.

Some remarks can be made on the results. On the one hand,
it can be seen that the simple average can be better or worse
than the simple worst, although it is not necessarily better

0.9
0.8
0.7
0.6
0.5
0.4

Expected prediction error
o
w

0.2

0.1

0 50 100 150 200
Generations

Fig. 12. Optimization of ensemble weights by minimizing the expected
prediction error.

10 0 2

4 6 4 6
Sample points Sample points

(a) (b)

Fig. 13. Prediction of the test data using (a) simple average and (b) weighted
average.

than the simple best. Besides, optimization of the ensemble
weights can improve the performance significantly on the
validation data, which however does not necessarily imply a
better performance on the test data. The reason is that the
statistics of the validation data may be somewhat different
from that of the test data. Thus, if it is unclear whether the
validation data are able to represent the full statistics of the
test data, the use of simple average is still recommended.

B. Use a Subset of the Non-dominated Solutions

It is suggested in [19], [20] that it might be better to use
a subset of available neural networks than to use all. For this
purpose, we select a “representative” subset from the non-
dominated solutions to construct a neural network ensemble.
Fig. 14 shows the 14 heuristically selected representative
solutions (filled circles).

The MSE of the best and worst single networks, the MSE
of the ensemble using simple average and weighted average
of the 14 representatives on the validation as well as the test
data are shown in Table II. Due to space limit, the details of
the prediction will not be presented.

It seems that in this example, the MSE of the ensemble
using simple average of the 14 selected representatives is
worse than that using all hon-dominated solutions. However,
this conclusion should not be generalized to other cases.

TABLE |
MSE OF THE ENSEMBLE CONSISTING OF ALL 40 NON-DOMINATED
SOLUTIONS.

best worst average weighted average

TABLE I

MSE OF THE ENSEMBLE CONSISTING OF 14 HEURISTICALLY SELECTED

MEMBERS.

best worst average weighted average

0.121
0.348

2.285
2.069

0.401
0.179

0.123
0.353

validation
test

validation

0.160
0.468

2.28
2.07

0.279
0.236

0.074

test 0.449

15

MSE on Training Data

0.5 .
5o
e
0 . . * % %% o
0 10 20 40 50 60
Number of Connections

Fig. 14. 14 selected representatives. The selected networks are marked with
filled circles.

VIlI. CONCLUSIONS

The main purpose of the paper is to show that neural net-
work regularization can be addressed from the multi-objective
optimization point of view. This approach exhibits two ad-
vantages over traditional regularization techniques. First, a
number of neural networks of a spectrum of model complexity
instead of one single neural network can be obtained in one
optimization run. Second, a new and more direct regularizer
can be used, which can be attributed to the fact that evolution-
ary algorithms instead of gradient-based learning algorithms
are used. Finally, the obtained neural networks, which are
structurally diversified, are ready to be used for constructing
neural network ensembles. These ideas are demonstrated to
work successfully on a test problem using the DWA and
NSGA-II algorithms.

Further research effort is to compare the proposed method
for generating neural network ensembles with the existing
methods, particularly when neural network ensembles are used
for reducing fitness evaluations in evolutionary optimization
[22], [23]. Besides, learning algorithms for incorporating a
priori knowledge into neural networks [24] can also be further
investigated using the proposed method.

ACKNOWLEDGMENT
The authors would like to thank E. Kdrner for his support.

REFERENCES
[1] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, Oxford, UK, 1995.
[2] J. Larsen, C. Svarer, L. N. Anderson, and L. K. Hansen. Adaptive

regularization in neural network modeling, chapter 5, pages 113-132.
Springer, 1998.
[3] J. Shao and D. Tu, editors. The Jackknife and Bootstrap. Springer, 1996.
[4] R. de A. Teixeira, A.P. Braga, R. H.C. Takahashi, and R. R. Saldanha.
Improving generalization of MLPs with multi-objective optimization.
Neurocomputing, 35:189-194, 2000.

[5]
[6]

[71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

H.A. Abbass. Speeding up back-propagation using multiobjective
evolutionary algorithms. Neural Computation, 15(11):2705-2726, 2003.
Y. Jin, T. Okabe, and B. Sendhoff. Adapting weighted aggregation for
multi-objective evolution strategies. In Proceedings of The 1st Int. Conf.
on Evolutionary Multi-Criterion Optimization, pages 96-110, Berlin,
2001. Springer.

Y. Jin, M. Olhofer, and B. Sendhoff. Evolutionary dynamic weighted ag-
gregation for multi-objective optimization: Why does it work and how?
In Proceedings of Genetic and Evolutionary Computation Conference,
pages 1042-1049, San Francisco, CA, 2001.

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II. In Parallel Problem Solving from Nature, volume VI, pages
849-858, 2000.

C. Igel and M. Hisken. Improving the Rprop learning algorithm.
In Proceedings of the 2nd ICSC International Symposium on Neural
Computation, pages 115-121, 2000.

M. Hisken, J. E. Gayko, and B. Sendhoff. Optimization for problem
classes — Neural networks that learn to learn. In Xin Yao and David B.
Fogel, editors, IEEE Symposium on Combinations of Evolutionary
Computation and Neural Networks (ECNN 2000), pages 98-109. IEEE
Press, 2000.

D. H. Ackley. A connectionist machine for genetic hillclimbing. Kluwer,
Boston, 1987.

R.D. Reed and R.J. Marks II. Neural Smithing. The MIT Press, 1999.
Md. M. Islam, X. Yao, and K. Murase. A constructive algorithm for
training copperative neural network ensembles. IEEE Trasactions on
Neural Networks, 14(4):820-834, 2003.

A.J.C. Sharkey and N. E. Sharkey. Diversity, selection and ensembles of
artificial neural nets. In Proceedings of Third International Conference
on Neural Networks and their Applications, pages 205-212, March 1997.
D.W. Opitz and J. W. Shavlik. Generating accurate and diverse members
of a neural network ensemble. In Advances in Neural Information
Processing Systems, volume 8, pages 535-541, Cambridge, MA, 1996.
MIT Press.

B. E. Rosen. Ensemble learning using decorrelated neural networks.
Connection Science, 8(3-4):373-384, 1996.

Y. Liu and X. Yao. Negatively correlated neural networks can produce
best ensemble. Australian Journal of Intelligent Information Processing
System, 4(3-4):176-185, 1997.

Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative
correlation learning. IEEE Transactions on Evolutionary Computation,
4(4):380-387, 2000.

M.P. Perrone and L.N. Cooper. When networks disgree: Ensemble
methods for hybrid neural networks. In R. J. Mammone, editor, Artificial
Neural Networks for Speech and Vision, pages 126-142. Chapman &
Hall, London, 1993.

X. Yao and Y. Liu. Making use of population information in evolutionary
artificial neural networks. IEEE Transactions on Systems, Man, and
Cybernetics-Part B:Cybernetics, 28(3):417-425, 1998.

Z.-H. Zhou, J.-X. Wu, Y. Jiang, and S.-F. Chen. Genetic algorithm
based selective neural network ensemble. In Proceedings of the 17th
International Joint Conference on Atrtificial Intelligence, pages 797-802,
Seattle, 2001. Morgan Kaufmann.

Y. Jin, M. Olhofer, and B. Sendhoff. A framework for evolutionary
optimization with approximate fitness functions. IEEE Transactions on
Evolutionary Computation, 6(5):481-494, 2002.

Y. Jin and B. Sendhoff. Reducing fitness evaluations using clustering
techniques and neural network ensembles. In Genetic and Evolutionary
Computation Conference, Seattle, 2004. Springer. Acceped.

Y. Jin and B. Sendhoff. Knowledge incorporation into neural networks
from fuzzy rules. Neural Processing Letters, 10(3):231-242, 1999.

