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Fuzzy Modeling of High-Dimensional Systems:
Complexity Reduction and Interpretability Improvement
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Abstract—Fuzzy modeling of high-dimensional systems is a
challenging topic. This paper proposes an effective approach to
data-based fuzzy modeling of high-dimensional systems. An initial
fuzzy rule system is generated based on the conclusion that optimal
fuzzy rules cover extrema [8]. Redundant rules are removed based
on a fuzzy similarity measure. Then, the structure and parameters
of the fuzzy system are optimized using a genetic algorithm and
the gradient method. During optimization, rules that have a very
low firing strength are deleted. Finally, interpretability of the
fuzzy system is improved by fine training the fuzzy rules with
regularization. The resulting fuzzy system generated by this
method has the following distinct features: 1) the fuzzy system
is quite simplified; 2) the fuzzy system is interpretable; and 3)
the dependencies between the inputs and the output are clearly
shown. This method has successfully been applied to a system that
has 11 inputs and one output with 20 000 training data and 80 000
test data.

Index Terms—Complexity reduction, fuzzy modeling, inter-
pretability, optimization, regularization.

I. INTRODUCTION

E XPERT knowledge-based and data-driven rule gen-
erations are two main approaches to fuzzy modeling.

Recently, data-based rule generation has been widely in-
vestigated and shown to be very successful. Despite that,
conventional fuzzy models suffer from combinatorial rule
explosion; in other words, the model complexity grows expo-
nentially with the input dimension. To deal with this problem,
several methods have been developed. One popular method is
to replace the conventional fixed or adaptive fuzzy grid with
a more flexible k-d tree [1], which was originally suggested
to storage data. Alternatively, quad trees [2] have also been
adopted for input space partition. Although the former is
more flexible than the later, it has often a lot of nonuniform
overlapping membership functions to which it is hard to assign
an understandable linguistic term. Since all the input variables
are not necessarily interactive, an iterative construction algo-
rithm involving building and pruning has been developed in
[3]. A hierarchical rule structure, where the number of fuzzy
rules grows linearly with the input number, is proposed in [4].
Evolutionary algorithms have also been used as a new tool for
building compact fuzzy systems. Both genetic algorithms [5]
and evolution strategies [6] have been introduced to reduce the
complexity of fuzzy rules. Apart from the above efforts on an
efficient rule structure, use of interpolation [7] and optimal
rules that cover the extrema [8] are another two interesting ideas

Manuscript received April 20, 1999; revised November 19, 1999.
The author is with the Future Technology Research Division, Honda R&D

Europe GmbH, Offenbach/Main 63073 Germany.
Publisher Item Identifier S 1063-6706(00)03203-3.

for rule reduction. Recently, it is suggested that fuzzy systems
with a union-rule configuration can reduce the rule complexity
effectively [9]. Techniques of deleting redundant, inconsistent
and inactive rules after rule generation are also very useful.

One of the most important issues in data-driven fuzzy rule
generation is interpretability (also called transparency) of the
fuzzy system. It is well known that one of the most important
motivations to use a fuzzy system for system modeling is that
a fuzzy system is easy to understand for human beings. How-
ever, interpretability of a fuzzy system might be lost for adap-
tive fuzzy systems using data-based learning. In [10] and [11],
interpretability of fuzzy systems from the view point of fuzzy
membership functions are discussed. In [10], interpretability is
maintained by loosely limiting the location of the membership
functions during learning. Alternatively, similar fuzzy member-
ship functions are merged in [11] so that the resulting fuzzy par-
titions are interpretable. Interpretability of the consequent part
of the Takagi–Sugeno fuzzy rules is considered in [12] through
local learning.

The purpose of this paper is twofold. On the one hand, we try
to develop a practical method for modeling high-dimensional
systems with a simplified fuzzy system. On the other hand, we
hope that the resulting fuzzy system is easy to understand. To
this end, an initial fuzzy rule base is first generated by taking
advantage of the conclusion that optimal fuzzy rules cover the
extrema [8]. In rule generation, a fuzzy similarity measure is
adopted to check the similarity of each rule before putting it into
the rule base to avoid rule redundancy. Then both the structure
and parameters of the fuzzy rules are optimized using a genetic
algorithm and a gradient learning algorithm. The structure of the
rule premise (i.e., which inputs should appear in the premise part
of a fuzzy rule) is optimized using a genetic algorithm based on
a local cost function, which is consistent with the motivation to
establish local optimal fuzzy rules. It is shown that optimiza-
tion of the rule structure cannot only reduce the rule complexity
and improve the system performance, but also reveal the depen-
dencies between the system inputs and the system output. After
structure optimization, the parameters of the fuzzy rules are op-
timized by a gradient learning algorithm. During learning, fuzzy
rules with a very low firing strength are deleted, which plays an
important role in reducing the number of fuzzy rules. Finally,
interpretability of the fuzzy system is improved by fine tuning
the fuzzy rules with regularization.

This method has been applied to an example with 11 input
variables and one output variable. There are 100 000 data sets
in total, among which 20 000 sets are for training and the rest
are for test purpose only. The resulting fuzzy system is very
inspiring. The final system contains only 27 fuzzy rules and its
performance on both training and test data is satisfactory.
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In Section II, we describe how to generate a compact, locally
optimal fuzzy rule base from the given data. Section III intro-
duces the structure and parameter optimization based on genetic
algorithms and the gradient method. The algorithm to improve
interpretability of the fuzzy system is presented in Section IV.
An application example is given in Section V, which shows that
the proposed method works very effectively. Section VI con-
cludes this paper with a summary of the work.

II. GENERATION OFLOCAL OPTIMAL RULES

A. Rule Generation on Extrema

In [13], an approach to generating fuzzy rules from data has
been proposed. In the method, each input variable is partitioned
into a number of fuzzy subsets beforehand and fuzzy rules are
generated based on these fuzzy subsets. The method works ef-
fectively when the number of data sets is limited. However, if
the number of available data sets is huge, the number of gener-
ated fuzzy rules will increase tremendously. This gives rise to a
serious problem because a fuzzy rule base with a huge number
of fuzzy rules is undesirable. Besides, the heuristic fuzzy par-
titions for the input variables may not be optimal. In fact, it is
not necessary to generate a fuzzy rule for each data set. As is
shown in [8], optimal fuzzy rules cover extrema. This is a very
interesting conclusion that enables us to reduce the number of
fuzzy rules greatly when we generate fuzzy rules from data.

Suppose the total number of given data sets is. If we divide
the whole data sets into patches, the number of data sets in
each patch will be , assuming that is an integer.
The patch size can be adjusted properly based on the smoothness
of the output data. Normally, when the output varies rapidly, the
patch size should be smaller; on the other hand, the patch size
can be a little larger if the output surface is smooth.

For each patch of the data, we find the two data sets that
have the minimal and maximal outputs respectively. Suppose
for patch , the two data sets are

where is the dimension of the input. For these two data sets,
two Sugeno–Takagi fuzzy rules can be generated

If is is

Then is

If is is

Then is

where are fuzzy sets whose membership function can be
described by

(1)

(2)

where and is the width of the Gaussian function,
which can be selected on the basis of the amplitude of the vari-

Fig. 1. Illustration of a data patch and its extrema.

able. In this way, fuzzy rules will be generated in total, which
will be much smaller than , because usually, the patch size
could be ten or larger. Fig. 1 illustrates the two points A and B
within patch , on each of which one fuzzy rule will be gener-
ated.

B. Similarity Checking

Usually there would be a lot of redundant or sometimes in-
consistent rules if the generated fuzzy rules are not properly
checked. Redundant or inconsistent rules are generated when
the inputs of different rules are quite similar. If the consequent
parts of these rules are also similar, the rules may be redundant.
If, usually due to noises in the data, the consequent parts are sig-
nificantly different, inconsistent rules will be generated. To pre-
vent the algorithm from generating fuzzy rules that are redun-
dant or inconsistent, a similarity measure for fuzzy rules needs
to be developed. In this work we use a measure called similarity
of rule premise (SRP) proposed in [6]. Consider the following
two fuzzy rules:

If is is is

Then is

If is is is

Then is

the SRP of the two rules is defined by

(3)

where is a fuzzy similarity measure for fuzzy sets
and , which is defined by

(4)

where is the size of fuzzy set

(5)

Please refer to [6] for the details for computing the fuzzy simi-
larity measure.

By checking the SRP of the fuzzy rules, redundant and incon-
sistent rules can be removed. In this way, the rule base can be
simplified greatly.



214 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 2, APRIL 2000

III. STRUCTURE AND PARAMETER OPTIMIZATION

A. Local Structure Optimization

Structure optimization for fuzzy rule systems is very impor-
tant for complexity reduction and performance enhancement.
In a conventional fuzzy system, each rule contains all the input
variables in its premise. In practice, it is found that such a rule
system is hard to simplify and the system performance is not
satisfactory. In addition, as the number of variables increases in
the rule premise, it becomes harder and harder for human beings
to understand the rule. To deal with this problem, we introduce
genetic algorithms (GA’s) to optimize the structure of the rule
base.

GA’s are a class of stochastic algorithms for adaptive sys-
tems and optimization [14]. The GA usually consists of three
main operations, namely, selection, reproduction, and mutation,
which are inspired from natural process of evolution. In opti-
mization, the objective parameters are encoded into a chromo-
some or an individual using direct or indirect genetic coding.
A number of individuals representing the initial solution for the
parameters are then generated randomly for the initial popula-
tion . Each individual in population is then evaluated
with a performance index called fitness. Based largely on the
principle of “survival of the fittest,” a number of individuals in
population are selected to produce new individuals using
crossover. The resulting new individuals are called offspring that
form a new population . Sometimes, the individual(s)
with the best fitness will be directly passed to the population

(elitism). To emulate genetic mutations in the natural
evolution, mutation is implemented with a small probability on
the individuals in population . This process continues
until a termination condition is met and the individual with the
best fitness in the final population is the solution to the problem.

The genetic coding for fuzzy rule structure optimization is
very straightforward. Suppose we are to optimize a fuzzy system
consisting of Takagi–Sugeno fuzzy rules. The total number
of inputs is . Therefore, there will be genes in the chro-
mosome, each consisting of only one binary bit “0” or ‘1.” A
“0” denotes that the input variable does not appear in the corre-
sponding fuzzy rule and “1” means does. Assume there are five
input variables in total and the piece of code for theth fuzzy
rule is “10 101,” then the fuzzy rule looks like

If is is is then is

where are fuzzy subsets for input variable
in rule and is a fuzzy subset for the output. If no input
appears in the premise, the rule is removed.

The purpose of rule structure optimization is to generate local
optimal fuzzy rules, therefore, we use a local fitness function for
GA. That is to say, the fuzzy rules will be optimized within each
data patch. Suppose there arefuzzy rules for patch, then the
following error function is used for evaluating rule :

(6)

where is the patch size defined Section II-A, is the th
output data of the system in patch in, and is the crisp output
of rules

(7)

(8)

where is a logic function to be defined in (10). Recall that the
maximal number of fuzzy rules generated for patchis two. Due
to similarity checking, one or both of them may be removed.
Therefore, . Obviously, if both rules in patch are
removed, the data sets in this patch will not play a role in rule
structure optimization.

Since a conventional genetic algorithm aims to maximize its
fitness function and our goal is to minimize the local modeling
error, we use the following fitness function for each subsystem:

(9)

where the constant 1 is added to avoid computational troubles.
The motivation to locally optimize the structure of the rules

is clear, i.e., to let the fuzzy rules cover the data sets in the cor-
responding patch as efficiently as possible. In the application
example provided in Section V, we will show that the structure
optimization is vital for complexity reduction of the generated
fuzzy system.

B. Global Parameter Learning

Fuzzy systems that can learn are becoming more and more
popular since the beginning of the last decade. Several learning
algorithms developed in the field of artificial neural networks
have been applied to fuzzy system learning. Supervised learning
based on the gradient method [15], unsupervised learning [16],
and reinforcement learning [17] have proved to be very effective
to improve the performance of the fuzzy systems. Furthermore,
fuzzy systems that can learn from data will be much more ob-
jective and the knowledge they acquired is believed to be more
profound.

In this subsection, we use the learning algorithms developed
on the basis of the gradient method to optimize the parameters
of the fuzzy system, including the parameters for the member-
ship functions in the rule premise and the constants in the rule
consequent.

Suppose the fuzzy rules generated in the last subsection can
be expressed in the following general form:

If is and and is

Then is

where is a logic function indicating
whether input variable appears in the premise of rule

if appears in the premise
if does not appear in the premise.

(10)

Notice that if variable does not appear in the rule, it is equiv-
alent to the condition “ is any. ”Therefore, the firing strength
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is always one for this part of the condition. The cost function
used for fuzzy system learning is

(11)

where is the real output of theth data set and is the
output of the fuzzy model for theth inputs

(12)

(13)

Based on the gradient method, it is straightforward to derive the
learning algorithm for the parameters of the fuzzy membership
functions. The learning algorithm will be given in Section IV
when we discuss the regularization algorithm for interpretability
improvement.

In the process of fuzzy system learning, the average firing
strength of each fuzzy rule is checked. Those rules with a firing
strength that is lower than a prescribed threshold are believed to
be inactive rules and will be deleted. In our simulation example,
it is found that if each input variable appears in the premise
part of all the fuzzy rules, rule reduction is difficult. On the
contrary, if the structure of the fuzzy system is optimized, only
a small number of the rules are frequently fired. In this case,
a large number of inactive rules can be removed without the
deterioration of the system performance.

IV. I NTERPRETABILITY CONSIDERATIONS

A. Interpretability of Fuzzy Systems

One important motivation of using fuzzy systems is their ex-
planation capacity. Besides good system performance, one also
hopes to gain insights into an unknown system by building a
fuzzy model. However, a fuzzy system generated from data is
not necessarily understandable. Interpretability or transparency
can thus be used to indicate how easily a fuzzy can be under-
stood by human beings. Currently, there exists no well-estab-
lished definitions for interpretability of a fuzzy system. In [18],
[19], some important aspects of fuzzy systems pertaining to
interpretability have been discussed. Generally, interpretability
of fuzzy systems depends on the following aspects. The first
and most important factor is the distribution of the fuzzy mem-
bership functions (can be called a fuzzy partition loosely). For
fuzzy rules that are easy to understand, a fuzzy partition should
be both complete and distinguishable, so that a sound physical
meaning (a linguistic term) could be associated with each fuzzy
subset in the partition. In most cases, the distinguishability of the
fuzzy subsets is the first thing to concern to improve the inter-
pretability of a fuzzy system. In Fig. 2, examples of: 1) indistin-
guishable and 2) distinguishable fuzzy partitions are illustrated.
It should be pointed out that there are no definite criteria for the
distinguishability of a fuzzy partition. Generally, it is dependant
on the similarity of the fuzzy subsets and the number of fuzzy
subsets in the partition. A distinguishable fuzzy partition should
not have a lot of very similar fuzzy subsets and the number of

(a)

(b)

Fig. 2. (a) Indistinguishable and (b) distinguishable fuzzy partitions.

Fig. 3. Approximation results on part of the test data.

fuzzy subsets should not exceed nine [19]. Second, the fuzzy
rules in the rule base should be consistent. If there are rules that
are strongly contradictory to each other, it is also hard to under-
stand the fuzzy rules. Other factors may include the number of
variables in the rule premise and the total number of fuzzy rules
in the rule base. The smaller the number of combinations in the
rule premise, the easier it is to understand the fuzzy rule. So is
the number of fuzzy rules in the rule base. In this section, we
focus on the distinguishability of the fuzzy subsets.

B. Finding the Similar Subsets

There are several fuzzy similarity measures, one of which is
based on the distance measure

(14)

If Gaussian membership functions are involved, the following
simple expression can be used to approximate the distance be-
tween two fuzzy subsets:

(15)
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(a) (b)

(c) (d)

Fig. 4. (a)–(d) Membership functions before interpretability improvement.

assuming the Gaussian membership function has the following
form:

(16)

It is shown in our simulation that this simplified measure works
well for finding the similar fuzzy sets.

Now we are ready to apply the fuzzy similarity measure to
find the similar fuzzy subsets within a fuzzy partition. Assume
variable has fuzzy subsets . Then
they can be divided into groups using a prescribed similarity
threshold

(17)

where denotes a group of fuzzy subsets that are con-
sidered to be similar, is the reference fuzzy set for the
group. For example, the eight fuzzy subsets illustrated in
Fig. 2(a) can be divided into three groups of similar fuzzy sets:

and .
The goal of regularization is to drive the similar fuzzy sets

in to a same fuzzy set. However, it should be pointed out
that during regularization, the fuzzy subsets must be regrouped
in each cycle of learning. More discussions on this issue will be
provided in the next subsection.

C. Regularized Learning

One of the neural network regularization techniques is called
formal regularization, in which an extra penalty term is added

to the conventional error function during learning [20]. The
penalty term can be determined based on a variety of criteria
from the heuristic smoothness method to the information-the-
oretic approach. In this paper, the aim of regularization is to
drive the similar fuzzy sets in set to a same fuzzy set during
gradient learning so that the interpretability of the fuzzy system
can be greatly improved without seriously deteriorating the
system performance. To achieve this, we use the following cost
function in regularized learning:

(18)

where is the conventional error function defined in (11),is
called the regularization coefficient , and is the
regularization term for merging the similar fuzzy membership
functions

(19)

where and are the two parameters in the Gaussian func-
tion shared by all the fuzzy subsets in group. In regularized
learning, the initial values of and can be the average of
the and of subset in the same group

(20)
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(e) (f)

(g) (h)

Fig. 4. (Continued.) (e)–(h) Membership functions before interpretability improvement.

(21)

where is the number of subsets in group . According to
the gradient method, the regularized learning algorithm can be
developed for the fuzzy system described by (12) and (13)

(22)

(23)

(24)

(25)

(26)

(27)

It is seen that the modification of the parameters depends not
only on the system error, but also on how the similar fuzzy sub-
sets converge to the same one. The regularization parameter
plays a very important role in regularization. Ifis too large,
then the similar fuzzy subsets will be merged quickly but the
system performance may becomes seriously worse. On the con-
trary, if is too small, then the system performance will be good,
but the similar fuzzy subsets may remain indistinguishable and
the interpretability of the fuzzy system is not good. It is also
necessary to point out that a fuzzy subset that is initially in
group may be put in another group and be merged with the
subsets in that group. For example, in Fig. 2(a),is initially
in group . During regularized learning, may move toward
group and finally be merged with the fuzzy sets in. This
is due to the fact that to merge with and causes a
much larger error than to merge with and . This is the
reason why regularized learning instead direct merging is used
to improve the interpretability of the fuzzy system.

V. SIMULATION STUDY

A. Fuzzy Rule Generation and Optimization

The proposed method is applied to an example that contains
20 000 training data sets and 80 000 test sets. The system has
11 input variables and one output variable. For such a high-di-
mensional system, it is very difficult to adopt a grid partition for



218 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 2, APRIL 2000

(a) (b)

(c) (d)

Fig. 5. (a)–(d) Membership functions after interpretability improvement.

fuzzy rule generation. Imagine that we would like to generate a
fuzzy system with genetic algorithms. In the simplest case, we
would partition each variable into three fuzzy subsets. If the grid
fuzzy rule structure is adopted, the total number of fuzzy rules
will be 3 . For such a large system, the genetic algorithm will
become very inefficient and the optimization results are unac-
ceptable. Since there are 20 000 training data sets, it is difficult
to directly employ the method proposed in [13].

According to the method proposed in the previous sections
of this paper, we first generate fuzzy rules on the extrema of
each patch. To achieve a good balance between the system per-
formance and rule complexity, different patch sizes and simi-
larity thresholds are tried. The resulting fuzzy systems using dif-
ferent patch sizes are evaluated according to rule complexity and
the local approximation error. To obtain a reasonable number
of fuzzy rules without losing too much information about the
system, we finally adopt a patch size of 15 and a similarity
threshold of 0.45. As a result, the generated fuzzy system has
1232 fuzzy rules. Recall that without similarity checking, the
total number of fuzzy rules will be around 2666 for 20 000 data
sets when the patch size is 15. The average local error of the
system is 0.167 and the global root mean square (rms) errors on
training and test data are 0.259 and 0.305, respectively.

In the fuzzy system generated previously, each variable ap-
pears in the premise part of the fuzzy rule. We first attempt to
train the fuzzy system without optimization of the rule struc-
ture. Unfortunately, we find the fuzzy system has two problems.

First, when training proceeds, the error on the test data is not
satisfactory. In our simulation, after 300 iterations of gradient
learning, the training root mean square (rms) error is 0.127 and
the test rms error is 0.233. It is seen that although the training
error has been reduced greatly, the test error is almost twice of
the training error. Second, we find that the performance of the
fuzzy system degrades seriously when we try to reduce the rule
complexity. For example, when the rules with an average firing
strength lower than 0.055 are deleted, 682 rules remain in the
rule base. Even with such a large number of fuzzy rules, the
training and test errors increase to 0.252 and 0.301, respectively.
Obviously, such a fuzzy rule system is not satisfactory.

Due to the previous problems, we decide to use genetic
algorithms to optimize the rule structure. The optimization is
carried out in a local sense. Since there are 11 input variables,
the length of code for each rule in the individual is 11 with
each bit representing whether a variable appears in the rule. It
is obvious that if theth bit is zero, will
disappear from the premise part of the rule. In the simulation, the
population size is 100, crossover probability is 0.75 and mutation
rate is 0.01. Elitism selection is adopted. After 100 generations
of evolution, the average local error decreases from 0.176 to
0.09. It is conceivable that the decrease of the local error does
not necessarily mean the decrease of the global error. In fact,
the global training and test errors increase to 0.472 and 0.474.
The gradient method is then introduced. The learning result
is very inspiring. After 100 iterations of training, the training
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(e) (f)

(g) (h)

Fig. 5. (Continued.) (e)–(h) Membership functions after interpretability improvement.

error and test error are reduced to 0.154 and 0.197, respectively.
At this time, the rule number is still 1232. Compared to the
results without structure optimization, the test error is fairly
reduced, although the training error is increased slightly. Most
importantly, the complexity of the fuzzy system can be easily
reduced. The same threshold (0.055) is used to delete the inactive
rules. After rule deletion, there are only 27 fuzzy rules in the rule
base. The training error is 0.189 and the test error is 0.207. This
is a very inspiring result, taking into account the large number
of input variables and the huge number of training data sets. For
clarity, the approximation results of first 500 test data are shown
in Fig. 3, where the dotted line denotes the desired values and the
solid line is the output of the fuzzy model.

To investigate the dependencies between the inputs and the
output, let us have a look at the frequencies that the input vari-
ables show up in the rule premise. In the 27 fuzzy rules, we find
that appears 19 times, appears 11 times, and appears
eight times. In contrast, and shows up only two times.
This implies that in the system, and play a much more
important role than and . This conclusion coincides with
the results obtained by using statistical correlation analyses.

We also found that the average number of input variables that
appear in the rule premise is fairly small. In the rule base, the
maximal number of variables appearing in the premise part is
five and the minimal number is one with an average of 3.2 over
the 27 fuzzy rules. It is believed that a simpler rule premise
contributes to a better rule interpretability.

B. Interpretability Improvement

The fuzzy model is very good considering the system perfor-
mance and rule size. However, when we have a look at the mem-
bership functions of the input variables, it is found that most
of the variables have so many fuzzy subsets that it is almost
impossible to assign proper linguistic terms to the fuzzy sets
[Fig. 4(a)–(h)]. Due to space limit, the membership functions
for and are not plotted in the figure, because their
fuzzy membership functions in the fuzzy partition are fairly dis-
tinguishable. To improve interpretability of the fuzzy system,
we first try to directly merge the similar fuzzy sets in the fuzzy
partitions of to and . The result is not good: the rms
error for training data increases to 0.291 and the RMS error for
test data to 0.324.

We then implement the regularization algorithm introduced in
Section IV. The results are very inspiring. Although some of the
fuzzy subsets do not converge to exactly the same value, the pa-
rameter difference between them are minor and direct merging
of these subsets will not affect the system performance much.
The final membership functions are plotted in Fig. 5(a)–(h) ex-
cept for and . Compared to the fuzzy membership
functions before regularization, they become fairly distinguish-
able and the number of fuzzy sets in the fuzzy partitions is sig-
nificantly reduced. In this way, the interpretability of the fuzzy
system is greatly improved. The RMS errors for training and
test are 0.191 and 0.213, respectively. Compared to the errors
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TABLE I
PERFORMANCE OF THEFUZZY SYSTEMS BASED ON DIFFERENTMETHODS

before regularization (0.189 and 0.207), we find the error in-
crease can be neglected. Table I lists the system performance
and the number of rules for the different systems discussed in
the simulation.

C. Discussions

Through the simulation example, it is shown that the proposed
method is able to build a compact and interpretable fuzzy rule
system for high-dimensional systems with large number of ex-
perimental data. The effectiveness of the method can mainly be
ascribed to the following reasons:1) the fuzzy rules are generated
on extrema; 2) the structure of the fuzzy rule system is optimized
in a local sense; and 3) regularization rather than hard merging is
used in improving the interpretability of the fuzzy system. Since
noadhocassumptionson thesystemaremade in thismethod, it is
applicable to any systems. However, it should also be pointed out
to what degree the rule system can be simplified and how many
input variables appear in the rule premise, i.e., the optimal rule
structure, are dependant to some extent on the training data and
the nature of the original system. This agrees with the following
two facts: 1) all knowledge of a statistical model comes solely
from the data and 2) the optimal rule structure is determined by
the inherent structure of the original system.

VI. CONCLUSION

An approach to fuzzy modeling of high-dimensional systems
has been proposed in this paper. The proposed method can be di-
vided into the following steps: 1) generation of fuzzy rules that
cover the extrema directly from data; 2) rule similarity checking
for deletion of the redundant and inconsistent rules; 3) optimiza-
tion of the rule structure using genetic algorithms based on a
local performance index; 4) further training of the rule param-
eters using gradient based learning method and deletion of the
inactive rules; 5) interpretability improvement using regulariza-
tion. In this way, a compact and interpretable fuzzy model can
be obtained for a high-dimensional system. Through structure
optimization, the relationship between the inputs and the output
can also be revealed, which is very important for understanding

an unknown system. The effectiveness of the method is shown
by an example. With 20 000 training data and 11 input variables,
the final fuzzy system has only 27 fuzzy rules with a very good
performance on both training and test data sets.
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