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Fuzzy Modeling of High-Dimensional Systems:
Complexity Reduction and Interpretability Improvement

Yaochu Jin Member, IEEE

Abstract—Fuzzy modeling of high-dimensional systems is a for rule reduction. Recently, it is suggested that fuzzy systems
challenging topic. This paper proposes an effective approach to with a union-rule configuration can reduce the rule complexity
data-based fuzzy modeling of high-dimensional systems. An initial effectively [9]. Techniques of deleting redundant, inconsistent

fuzzy rule system is generated based on the conclusion that optimal nd inactive rul fter rul neration are also ver ful
fuzzy rules cover extrema [8]. Redundant rules are removed based a active rules aiter rule generation are also very usetul.

on a fuzzy similarity measure. Then, the structure and parameters ~ One of the most important issues in data-driven fuzzy rule
of the fuzzy system are optimized using a genetic algorithm and generation is interpretability (also called transparency) of the
the gradient method. During optimization, rules that have a very  fyzzy system. It is well known that one of the most important

low firing strength are deleted. Finally, interpretability of the i\ ations to use a fuzzy system for system modeling is that
fuzzy system is improved by fine training the fuzzy rules with

regularization. The resulting fuzzy system generated by this @ fUZZy system is easy to understand for human beings. How-
method has the following distinct features: 1) the fuzzy system €ver, interpretability of a fuzzy system might be lost for adap-
is quite simplified; 2) the fuzzy system is interpretable; and 3) tive fuzzy systems using data-based learning. In [10] and [11],

tk;]e dep_tla_EQenciehs éﬂatween the I?FLULE and thel_O:jJtpUt are cleaﬂy interpretability of fuzzy systems from the view point of fuzzy
snown. IS metho as successfully been applied to a system tha ; . . . e
has 11 inputs and one output with 20 000 training data and 80 000 tmembersh|p functions are discussed. In [10], interpretability is

test data. maintained by loosely limiting the location of the membership
functions during learning. Alternatively, similar fuzzy member-
ship functions are merged in [11] so that the resulting fuzzy par-
titions are interpretable. Interpretability of the consequent part
of the Takagi—Sugeno fuzzy rules is considered in [12] through
I. INTRODUCTION local learning.

XPERT knowledge-based and data-driven rule gen-The purpose oft_his paper is twofold. Or)the one hand,vye try
E erations are two main approaches to fuzzy modelinb’. develop.a praptlcql_method for modeling high-dimensional
Recently, data-based rule generation has been widely Systems with aS|mpI|f|ed fuzzy system. On the other hand, we
vestigated and shown to be very successful. Despite tHAPP€ that the resulting fuzzy system is easy to understand. To
conventional fuzzy models suffer from combinatorial ruldis end, an initial fuzzy rule base is first generated by taking
explosion; in other words, the model complexity grows exp@_dvantage of the conclu5|on_ that optimal f_uz_zy _rules cover the
nentially with the input dimension. To deal with this problemé*tréma [8]. In rule generation, a fuzzy similarity measure is
several methods have been developed. One popular metho@dapted to checkthg similarity of each rule before putting it into
to replace the conventional fixed or adaptive fuzzy grid witH'€ rule base to avoid rule redundancy. Then both the structure
a more flexible k-d tree [1], which was originally suggeste@nd parameters of the fuzzy rgles are thlmlzed using a genetic
to storage data. Alternatively, quad trees [2] have also be@l,gorlthm_and_agradl_ent_learnlng algorlthm.The structurg ofthe
adopted for input space partition. Although the former i&lle premise (i.e., whichinputs should appear inthe premise part
more flexible than the later, it has often a lot of nonunifori?f & fuzzy rule) is optimized using a genetic algorithm based on
overlapping membership functions to which it is hard to assig?n'ocal_ cost functlo_n, which is consstept with the motlva'_uo_n to
an understandable linguistic term. Since all the input variablgStablish local optimal fuzzy rules. It is shown that optimiza-
are not necessarily interactive, an iterative construction algi2n of the rule structure cannot only reduce the rule complexity
rithm involving building and pruning has been developed iAd improve the system performance, but also reveal the depen-
[3]. A hierarchical rule structure, where the number of fuzz§€ncies between the system inputs and the system output. After
rules grows linearly with the input number, is proposed in [4Ftrgcture opt|m|z¢_':1t|on, the_paramet.ers of thg fuzzy ru_Ies are op-
Evolutionary algorithms have also been used as a new tool f§pized by agradientlearning algorithm. During learning, fuzzy
building compact fuzzy systems. Both genetic algorithms [ﬂjles with avery low flrl_ng strength are deleted, which plz_;\ys an
and evolution strategies [6] have been introduced to reduce {fportant role in reducing the number of fuzzy rules. Finally,
complexity of fuzzy rules. Apart from the above efforts on affiterpretability of the fuzzy system is improved by fine tuning
efficient rule structure, use of interpolation [7] and optimaf® fuzzy rules with regularization.

rules that cover the extrema [8] are another two interesting idead his method has been applied to an example with 11 input
variables and one output variable. There are 100000 data sets

in total, among which 20 000 sets are for training and the rest

Index Terms—Complexity reduction, fuzzy modeling, inter-
pretability, optimization, regularization.
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In Section Il, we describe how to generate a compact, locally
optimal fuzzy rule base from the given data. Section Il intro-
duces the structure and parameter optimization based on genetic
algorithms and the gradient method. The algorithm to improve
interpretability of the fuzzy system is presented in Section IV.
An application example is given in Section V, which shows that
the proposed method works very effectively. Section VI con-
cludes this paper with a summary of the work.

Il. GENERATION OFLOCAL OPTIMAL RULES

A. Rule Generation on Extrema _ , _
Fig. 1. lllustration of a data patch and its extrema.

In [13], an approach to generating fuzzy rules from data has
peen proposed. In the method, each input variable is part'tlonﬂe. Inthis way2 P fuzzy rules will be generated in total, which
into a number of fuzzy subsets beforehand and fuzzy rules ar;

generated based on these fuzzy subsets. The method worke e be much smaller thanV, because usually, the patch size

fectively when the number of data sets is limited. However, ﬁpu'.d be ten.or larger. Fig. 1 _|Ilustrates the two p(_)lnts AandB
within patchy, on each of which one fuzzy rule will be gener-

the number of available data sets is huge, the number of gener-
ated fuzzy rules will increase tremendously. This gives rise to'a
serious proble_m becau;e a fuzzy _ruIe base with.a_huge numggrSimilarity Checking
of fuzzy rules is undesirable. Besides, the heuristic fuzzy par- . )
titions for the input variables may not be optimal. In fact, itis Usually there would be a lot of redundant or sometimes in-
not necessary to generate a fuzzy rule for each data set. Ag3gsistent rules if the generated fuzzy rules are not properly
shown in [8], optimal fuzzy rules cover extrema. This is ave&hecked. Redundant or inconsistent rules are generated when
interesting conclusion that enables us to reduce the numbefht inputs of different rules are quite similar. If the consequent
fuzzy rules greatly when we generate fuzzy rules from data. Parts of these rules.are glso similar, the rules may be redundant.

Suppose the total number of given data sef§ isf we divide If, usually due to noises in the data, the consequent parts are sig-
the whole data sets intt/ patches, the number of data sets jificantly different, inconsistent rules will be generated. To pre-
each patch will be® = N/M, assuming thaP is an integer. vent the algorithm from generating fuzzy rules that are redun-
The patch size can be adjusted properly based on the smooth§&&§ Or inconsistent, a similarity measure for fuzzy rules needs
of the output data. Normally, when the output varies rapidly, tH@ be developed. In this work we use a measure called similarity
patch size should be smaller; on the other hand, the patch 3éule premise (SRP) proposed in [6]. Consider the following
can be a little larger if the output surface is smooth. two fuzzy rules:

For each patch of the data, we find the two data sets that

have the minimal and maximal outputs respectively. Suppose! If 2 is .Ail(xl)’x? is Ajp(@2), -+, T 1S Ain(Tn),
for patchy, the two data sets are Theny is B;(y);
( max max max Inax) Rk If L1 iS Akl(x1)7 L2 iS AkQ (.1'2), I iS Akﬂ(xN)v
Lirt s&j2 5Ly Yy .
(xmin min | J}I»nin min) Theny is By, (y)
J1 %52 ylin 2 dy

. . . . the SRP of the two rules is defined by
wheren is the dimension of the input. For these two data sets,

two Sugeno-Takagi fuzzy rules can be generated SRP(i, k) = min S(Aij, Ary) A3)
’ - Jy VR *J
Rjp: I wyis AN (x1), - -, 2 1S AR (), J

Theny is y;

Rjs: M 2y is AN (1), 2y is A (24),

whereS(A4, B) is a fuzzy similarity measure for fuzzy sets
and B, which is defined by

H min M(A N B)
Theny is i} =
! 54, B) M(A)+ M(B) — M(AN B) @
where A;; are fuzzy sets whose membership function can be ) .
described by whereM (A) is the size of fuzzy sett
max max 2 max + °o
A (i) = exp(— (@i — 233™) / o ) 6y M(A) = / A(x) dz. (5)

Please refer to [6] for the details for computing the fuzzy simi-
AR () = eXp(— (zi — ™) / 6;;}“‘) (2) larity measure.
By checking the SRP of the fuzzy rules, redundant and incon-
where 6= and 6 is the width of the Gaussian function,sistent rules can be removed. In this way, the rule base can be
which can be selected on the basis of the amplitude of the vagimplified greatly.
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[Il. STRUCTURE AND PARAMETER OPTIMIZATION whereP is the patch size defined Section II-4,, is themth

A. Local Structure Optimization output data of the system in patchjirandy; is the crisp output
of rules R,
Structure optimization for fuzzy rule systems is very impor-

tant for complexity reduction and performance enhancement. y; = M (7)
In a conventional fuzzy system, each rule contains all the input >k Wik
variables in its premise. In practice, it is found that such a rule n
system is hard to simplify and the system performance is not Wip = Hgik(Aik) 8)
satisfactory. In addition, as the number of variables increases in i=1

the rule premise, it becomes hard_er an_d harder for human beif@ereg,,, is a logic function to be defined in (10). Recall that the

base. _ . _ Therefore0 < k& < 2. Obviously, if both rules in patcli are
GA's are a class of stochastic algorithms for adaptive sygsmoved, the data sets in this patch will not play a role in rule

tems and optimization [14]. The GA usually consists of thregrycture optimization.

main operations, namely, selection, reproduction, and mutationgince a conventional genetic algorithm aims to maximize its

which are inspired from natural process of evolution. In optfitness function and our goal is to minimize the local modeling

mization, the objective parameters are encoded into a chrorggror, we use the following fitness function for each subsystem:
some or an individual using direct or indirect genetic coding. .

A number of individuals representing the initial solution for the = (9)
parameters are then generated randomly for the initial popula- 1.0+ E;

tion P(¢). Each individual in populatiod’(¢) is then evaluated \yhere the constant 1 is added to avoid computational troubles.
with a performance index called fitness. Based largely on theThe motivation to locally optimize the structure of the rules
principle of “survival of the fittest,” a number of individuals injs clear, i.e., to let the fuzzy rules cover the data sets in the cor-
populationP(t) are selected to produce new individuals USinEbsponding patch as efficiently as possible. In the application
crossover. The resulting new individuals are called offspring thg¢ample provided in Section V, we will show that the structure

form a new populatio(t + 1). Sometimes, the individual(s) gptimization is vital for complexity reduction of the generated
with the best fitness will be directly passed to the populatiqfyzzy system.

P(t + 1) (elitism). To emulate genetic mutations in the natural
evolution, mutation is implemented with a small probability oB. Global Parameter Learning

the individuals in populatiod(z + 1). This process continues Fuzzy systems that can learn are becoming more and more

until "’_“erm'_”a“"” _condltlon IS me_t and the |nd|V|duaI with th%opular since the beginning of the last decade. Several learning
bestfitness in the final population is the solution to the probleryy i ms developed in the field of artificial neural networks
The genetic coding for fuzzy rule structure optimization if e heen applied to fuzzy system learning. Supervised learning
very straightforward. Suppose we are to optimize a fuzzy syst¢ffise on the gradient method [15], unsupervised learning [16],
consisting ofN Takagi-Sugeno fuzzy rules. The total numbeg, g reinforcement learning [17] have proved to be very effective
ofinputs isn. Therefore, there will be x IV .genes in the chro- 1 jmnroye the performance of the fuzzy systems. Furthermore,
mosome, each consisting of only one binary bit “0” or “1.” A,y systems that can learn from data will be much more ob-

“0" denotes that the input variable does not appear in the COrfgzyiye and the knowledge they acquired is believed to be more
sponding fuzzy rule and “1” means does. Assume there are f\HFofound.

input variables in total and the piece of code for jtie fuzzy

X ’ In this subsection, we use the learning algorithms developed
rule is “10101,” then the fuzzy rule looks like

on the basis of the gradient method to optimize the parameters
of the fuzzy system, including the parameters for the member-
ship functions in the rule premise and the constants in the rule
consequent.

Suppose the fuzzy rules generated in the last subsection can
be expressed in the following general form:

le If z1is Alj,.’lj'g is Agj,.’lj';) is A;)j, theny is Bj

whereA;; (i = 1,3,5) are fuzzy subsets for input variabte
in rule j and B; is a fuzzy subset for the outpyt If no input
appears in the premise, the rule is removed. If g1,;{x1is A1;}, and---andg,;{x, is A.;},

The purpose of rule structure optimization is to generate local ' ' ' '
optimal fuzzy rules, therefore, we use a local fithess function for
GA. That is to say, the fuzzy rules will be optimized within eaCkA/heregij{} (i = 1,2,---,n) is a logic function indicating

data patch. Suppose there arkizzy rules for patcly, thenthe whether input variable; appears in the premise of ruje
following error function is used for evaluating ruke:

Theny isy;

N [ &, if z; appears in the premise
gii{z} = { 1, if x; does not appear in the premise.(lo)
r
E; = 5 (y; — Ym)? (6) Notice that if variablec; does not appear in the rule, it is equiv

alent to the condition; is any. "Therefore, the firing strength

m=1
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is always one for this part of the condition. The cost function
used for fuzzy system learning is

1

E = 5 (y(t) = ya(t))’ (11)

+ A1A2A3 A4A5A6 A7A8

wherey,(t) is the real output of theth data set ang(¢) is the
output of the fuzzy model for th&h inputs

» X

N

WY

y(t) = % (12) ()
i1 Wy
j=1Wj A A A, A
wy = [ gis(Ai). (13)
i=1

Based on the gradient method, it is straightforward to derive the
learning algorithm for the parameters of the fuzzy membership
functions. The learning algorithm will be given in Section IV » X
when we discuss the regularization algorithm for interpretability (b)
improvement.

. .. Fig. 2. (a) Indistinguishable and (b) distinguishable fuzzy partitions.
In the process of fuzzy system learning, the average firing

strength of each fuzzy rule is checked. Those rules with a firing
strength that is lower than a prescribed threshold are believed to
be inactive rules and will be deleted. In our simulation example, 4 5

it is found that if each input variable appears in the premise . I )
part of all the fuzzy rules, rule reduction is difficult. On the '
contrary, if the structure of the fuzzy system is optimized, only NURAT A M
a small number of the rules are frequently fired. In this case, wsll | ) y
a large number of inactive rules can be removed without the il | |k
deterioration of the system performance. W ‘ v

IV. INTERPRETABILITY CONSIDERATIONS

_.—‘i':_-’
T

A. Interpretability of Fuzzy Systems 0s

One important motivation of using fuzzy systems is their ex-
planation capacity. Besides good system performance, one alg03. Approximation results on part of the test data.
hopes to gain insights into an unknown system by building a

fuzzy model. However, a fuzzy system generated from datafl'f‘zzy subsets should not exceed nine [19]. Second, the fuzzy

not necessarily understa}ndable. Interpretabmty or transpareqﬁyes in the rule base should be consistent. If there are rules that
can thus be used to indicate how easily a fuzzy can be und%r-

: . re strongly contradictory to each other, it is also hard to under-

stood by human beings. Currently, there exists no well-estah- .
lished definitions for interpretability of a fuzzy system. In [18 stand the fuzzy rules. Other factors may include the number of
. P y ysy ' [ ] ariables in the rule premise and the total number of fuzzy rules
[19], some important aspects of fuzzy systems pertaining .t0

: . ) . ' if the rule base. The smaller the number of combinations in the
interpretability have been discussed. Generally, mterpretabllﬁj)!I

of fuzzy systems depends on the following aspects. The fit te premise, the easier it is to understand the fuzzy rule. So is
. . o ' tRe number of fuzzy rules in the rule base. In this section, we

and ”?OSt |mportant factor is the distribution o.f'the fuzzy MeM5eus on the distinguishability of the fuzzy subsets.

bership functions (can be called a fuzzy partition loosely). For

fuzzy rules that are easy to understand, a fuzzy partition shogjd

be both complete and distinguishable, so that a sound physical

meaning (a linguistic term) could be associated with each fuzzyThere are several fuzzy similarity measures, one of which is

subset in the partition. In most cases, the distinguishability of te@sed on the distance measure

fuzzy subsets is the first thing to concern to improve the inter- 1

pretability of a fuzzy system. In Fig. 2, examples of: 1) indistin- ~ S(4,B) = T d(Ay, Ay’ S() € (0,1]. (14)

guishable and 2) distinguishable fuzzy partitions are illustrated. b

It should be pointed out that there are no definite criteria for theGaussian membership functions are involved, the following

distinguishability of a fuzzy partition. Generally, it is dependargimple expression can be used to approximate the distance be-

on the similarity of the fuzzy subsets and the number of fuzaween two fuzzy subsets:

subsets in the partition. A distinguishable fuzzy partition should

not have a lot of very similar fuzzy subsets and the number of d(Ar, Az) = \/(al —a2)?+(by — b2)? (15)

Finding the Similar Subsets
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© (d)

Fig. 4. (a)-(d) Membership functions before interpretability improvement.

assuming the Gaussian membership function has the followittggthe conventional error function during learning [20]. The
form: penalty term can be determined based on a variety of criteria
(z — a;)? from the heuristic smoothness method to the information-the-

Ai(x) = exp <—T> . (16) oretic approach. In this paper, the aim of regularization is to

i drive the similar fuzzy sets in séf;, to a same fuzzy set during
It is shown in our simulation that this simplified measure workgradient learning so that the interpretability of the fuzzy system
well for finding the similar fuzzy sets. can be greatly improved without seriously deteriorating the
Now we are ready to apply the fuzzy similarity measure tgystem performance. To achieve this, we use the following cost
find the similar fuzzy subsets within a fuzzy partition. Assumtunction in regularized learning:

variablex; hasL; fuzzy subsets4;, ¢ = 1,2,---,L;. Then .
they can be divided intg:; groups using a prescribed similarity J=E+1Q (18)
thresholdé whereF is the conventional error function defined in (14)is

) called the regularization coefficie(® < v < 1), and{2 is the
Uin = {4i [ S(4i, Aro) 2 6}; 1<k<Li  (17) regularization term for merging the similar fuzzy membership

where U;;, denotes a group of fuzzy subsets that are coftnctions
sidered to be similarA,, is the reference fuzzy set for the 1 J 2 -
group. For example, the eight fuzzy subsets illustrated in €= 33 (ay —an)?
Fig. 2(a) can be divided into three groups of similar fuzzy sets:
Ul = {Al, AQ,Ag}, U2 = {A4,A5, A(;} andUg = {A7, Ag} 1 " = \2

The goal of regularization is to drive the similar fuzzy sets - 2 Z Z Z (bij — bir) (19)
in U;;, to a same fuzzy set. However, it should be pointed out
that during regularization, the fuzzy subsets must be regroupederea;;, andb;; are the two parameters in the Gaussian func-
in each cycle of learning. More discussions on this issue will hien shared by all the fuzzy subsets in grddg. In regularized

=1 k=1 AngUik

=1 k=1 A;; €l

provided in the next subsection. learning, the initial values of;; andb;;, can be the average of
. . thea,;; andb,;; of subset4; in the same group/s;
C. Regularized Learning ,
ik
One of the neural network regularization techniques is called i = Ii Z ai; (20)
ik

formal regularization, in which an extra penalty term is added ik 4 U
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Fig. 4. (Continued) (e)—(h) Membership functions before interpretability improvement.

Iix
bir = 1 Zk b 21 It is seen that the modification of the parameters depends not
ik — ] ( ) ..
Lix AlcU. only on the system error, but also on how the similar fuzzy sub-

sets converge to the same one. The regularization parameter
wherel;;, is the number of subsets in grolify.. According to  plays a very important role in regularization.fis too large,
the gradient method, the regularized learning algorithm can g‘%n the similar fuzzy subsets will be merged quickly but the
developed for the fuzzy system described by (12) and (13) ' system performance may becomes seriously worse. On the con-
trary, ifv is too small, then the system performance will be good,
but the similar fuzzy subsets may remain indistinguishable and

aJ = 0B +y(a;; — apg) (22) the interpretability of the fuzzy system is not good. It is also
dai Aiy Uk daij necessary to point out that a fuzzy subhdgt that is initially in
groupU;;, may be put in another group and be merged with the
aJ _OE b — T 23) ;ubsets in that group. For.example,_in Fig. 2(&),is initially
i |4 o, = Ay T\ij — Dik in groupUs. qulng regularized Iegrnlngﬁlg may move towa}rd
R groupUs and finally be merged with the fuzzy setslify. This
is due to the fact that to mergés with A, and A5 causes a
8J = Z (ai; — aix) (24) much larger error than to mergk; with A7 andAs. This is the
Oay, AreUnn ’ reason why regularized learning instead direct merging is used
to improve the interpretability of the fuzzy system.
a.J ,
by Ai;q}\(b” ~ bix) (25) V. SIMULATION STUDY
O A. Fuzzy Rule Generation and Optimization
S = W) = yat))(w; — y(t))(wi — ai;)w; /b3, (26)  The proposed method is applied to an example that contains
" 20000 training data sets and 80 000 test sets. The system has
JF 3 11 input variables and one output variable. For such a high-di-

— P — P— v 2 - <.
ab; (W(t) = pa(®))(w; = y(O)wi = aij)"w; /by (27)  hensional system, itis very difficult to adopt a grid partition for
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Fig. 5. (a)—(d) Membership functions after interpretability improvement.

fuzzy rule generation. Imagine that we would like to generateFrst, when training proceeds, the error on the test data is not
fuzzy system with genetic algorithms. In the simplest case, watisfactory. In our simulation, after 300 iterations of gradient
would partition each variable into three fuzzy subsets. If the gridarning, the training root mean square (rms) error is 0.127 and
fuzzy rule structure is adopted, the total number of fuzzy ruléise test rms error is 0.233. It is seen that although the training
will be 3!, For such a large system, the genetic algorithm widirror has been reduced greatly, the test error is almost twice of
become very inefficient and the optimization results are unate training error. Second, we find that the performance of the
ceptable. Since there are 20 000 training data sets, it is difficfiizzy system degrades seriously when we try to reduce the rule
to directly employ the method proposed in [13]. complexity. For example, when the rules with an average firing
According to the method proposed in the previous sectioggength lower than 0.055 are deleted, 682 rules remain in the
of this paper, we first generate fuzzy rules on the extrema mfle base. Even with such a large number of fuzzy rules, the
each patch. To achieve a good balance between the system faining and test errors increase to 0.252 and 0.301, respectively.
formance and rule complexity, different patch sizes and sin®@bviously, such a fuzzy rule system is not satisfactory.
larity thresholds are tried. The resulting fuzzy systems using dif-Due to the previous problems, we decide to use genetic
ferent patch sizes are evaluated according to rule complexity aidorithms to optimize the rule structure. The optimization is
the local approximation error. To obtain a reasonable numlearried out in a local sense. Since there are 11 input variables,
of fuzzy rules without losing too much information about théhe length of code for each rule in the individual is 11 with
system, we finally adopt a patch size of 15 and a similarigach bit representing whether a variable appears in the rule. It
threshold of 0.45. As a result, the generated fuzzy system ha®bvious that if théth (¢ = 1,2,---,11) bit is zero,z; will
1232 fuzzy rules. Recall that without similarity checking, thdisappear from the premise part of the rule. In the simulation, the
total number of fuzzy rules will be around 2666 for 20 000 dafaopulation size is 100, crossover probability is 0.75 and mutation
sets when the patch size is 15. The average local error of thte is 0.01. Elitism selection is adopted. After 100 generations
system is 0.167 and the global root mean square (rms) errorsobrevolution, the average local error decreases from 0.176 to
training and test data are 0.259 and 0.305, respectively. 0.09. It is conceivable that the decrease of the local error does
In the fuzzy system generated previously, each variable amt necessarily mean the decrease of the global error. In fact,
pears in the premise part of the fuzzy rule. We first attempt the global training and test errors increase to 0.472 and 0.474.
train the fuzzy system without optimization of the rule struckFhe gradient method is then introduced. The learning result
ture. Unfortunately, we find the fuzzy system has two problemis. very inspiring. After 100 iterations of training, the training
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Fig. 5. (Continued) (e)—(h) Membership functions after interpretability improvement.

error and test error are reduced to 0.154 and 0.197, respectivBly.Interpretability Improvement
At this time, the rule number is still 1232. Compared to the
results without structure optimization, the test error is fairly The fuzzy model is very good considering the system perfor-
reduced, although the training error is increased slightly. Mostance and rule size. However, when we have a look at the mem-
importantly, the complexity of the fuzzy system can be easibyership functions of the input variables, it is found that most
reduced. The same threshold (0.055) is used to delete the inactif’¢he variables have so many fuzzy subsets that it is almost
rules. After rule deletion, there are only 27 fuzzy rules in the rulenpossible to assign proper linguistic terms to the fuzzy sets
base. The training error is 0.189 and the test error is 0.207. Tff$y. 4(a)—(h)]. Due to space limit, the membership functions
is a very inspiring result, taking into account the large numbéor x+, 19 andz;; are not plotted in the figure, because their
of input variables and the huge number of training data sets. Fozzy membership functions in the fuzzy partition are fairly dis-
clarity, the approximation results of first 500 test data are showinguishable. To improve interpretability of the fuzzy system,
in Fig. 3, where the dotted line denotes the desired values andweefirst try to directly merge the similar fuzzy sets in the fuzzy
solid line is the output of the fuzzy model. partitions ofz; to xg, 23 andzg. The resultis not good: the rms

To investigate the dependencies between the inputs and éneor for training data increases to 0.291 and the RMS error for
output, let us have a look at the frequencies that the input vakst data to 0.324.
ables show up in the rule premise. In the 27 fuzzy rules, we findWe then implement the regularization algorithm introduced in
thatz; appears 19 times;y appears 11 times, ang, appears Section IV. The results are very inspiring. Although some of the
eight times. In contrast;; andx;; shows up only two times. fuzzy subsets do not converge to exactly the same value, the pa-
This implies that in the system;, ©g andx4 play a much more rameter difference between them are minor and direct merging
important role tham:7 andzx1;. This conclusion coincides with of these subsets will not affect the system performance much.
the results obtained by using statistical correlation analyses.The final membership functions are plotted in Fig. 5(a)—(h) ex-

We also found that the average number of input variables theapt forz7, 210 andz;;. Compared to the fuzzy membership
appear in the rule premise is fairly small. In the rule base, tfienctions before regularization, they become fairly distinguish-
maximal number of variables appearing in the premise partdable and the number of fuzzy sets in the fuzzy partitions is sig-
five and the minimal number is one with an average of 3.2 oveificantly reduced. In this way, the interpretability of the fuzzy
the 27 fuzzy rules. It is believed that a simpler rule premisystem is greatly improved. The RMS errors for training and
contributes to a better rule interpretability. test are 0.191 and 0.213, respectively. Compared to the errors
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TABLE |
PERFORMANCE OF THEFUZZY SYSTEMS BASED ON DIFFERENT METHODS
Rule number | Training error | Test error | Interpretability
Structure not optimized, 1233 0.127 0.233 Bad
inactive rules not deleted
Structure not optimized, 682 0.252 0.301 Bad
inactive rules deleted
Structure optimized, 1233 0.154 0.197 Bad
inactive rules not deleted
Structure optimized, 27 0.189 0.207 Bad
inactive rules deleted
Structure optimized,
inactive rules deleted, 27 0.291 0.324 Good
direct merging
Structure optimized,
inactive rules deleted, 27 0.191 0.213 Good
regularized learning

before regularization (0.189 and 0.207), we find the error imn unknown system. The effectiveness of the method is shown
crease can be neglected. Table | lists the system performahgean example. With 20 000 training data and 11 input variables,
and the number of rules for the different systems discussedth final fuzzy system has only 27 fuzzy rules with a very good

the simulation.

C. Discussions

Through the simulation example, it is shown that the proposed?
method is able to build a compact and interpretable fuzzy rule
system for high-dimensional systems with large number of ex-[2]
perimental data. The effectiveness of the method can mainly be
ascribedtothe following reasons: 1) the fuzzy rules are generategjl
on extrema,; 2) the structure of the fuzzy rule system is optimized
in alocal sense; and 3) regularization rather than hard merging i$*l
used in improving the interpretability of the fuzzy system. Since [5]
noad hocassumptions onthe system are made inthis method, itis
applicable to any systems. However, it should also be pointed outél
to what degree the rule system can be simplified and how many
input variables appear in the rule premise, i.e., the optimal rule
structure, are dependant to some extent on the training data arid]
the nature of the original system. This agrees with the following
two facts: 1) all knowledge of a statistical model comes solely [g]
from the data and 2) the optimal rule structure is determined by
the inherent structure of the original system. [

V1. CONCLUSION [10]

An approach to fuzzy modeling of high-dimensional systems
has been proposed in this paper. The proposed method can bed#
vided into the following steps: 1) generation of fuzzy rules that
cover the extrema directly from data; 2) rule similarity checking[12]
for deletion of the redundant and inconsistent rules; 3) optimiza-
tion of the rule structure using genetic algorithms based on A3
local performance index; 4) further training of the rule param-
eters using gradient based learning method and deletion of ﬂfﬁl
inactive rules; 5) interpretability improvement using regulariza-
tion. In this way, a compact and interpretable fuzzy model cans]
be obtained for a high-dimensional system. Through structure
optimization, the relationship between the inputs and the outpL; 6]
can also be revealed, which is very important for understanding

performance on both training and test data sets.
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